import std.algorithm, std.container, std.conv, std.math, std.range, std.typecons, std.stdio, std.string; auto rdsp(){return readln.splitter;} void pick(R,T)(ref R r,ref T t){t=r.front.to!T;r.popFront;} void pickV(R,T...)(ref R r,ref T t){foreach(ref v;t)pick(r,v);} void readV(T...)(ref T t){auto r=rdsp;foreach(ref v;t)pick(r,v);} void readC(T...)(size_t n,ref T t){foreach(ref v;t)v=new typeof(v)(n);foreach(i;0..n){auto r=rdsp;foreach(ref v;t)pick(r,v[i]);}} const mod = 10^^9+7; alias mint = FactorRing!mod; alias mat = Matrix!mint; alias segTree = SegmentTree!(mat, "a*b"); void main() { int n; readV(n); int[] a, b; readC(n-1, a, b); auto g = Graph!()(n); foreach (ai, bi; lockstep(a, b)) g.addEdgeB(ai, bi); auto t = g.makeTree.rootify(0).hlDecomposition; t.makePath(0); auto st = new segTree[](t.paths.length); foreach (i, ref sti; st) sti = new segTree(t.paths[i].length, mat.unit(2)); int q; readV(q); foreach (_; 0..q) { auto rd = rdsp; string typ; pick(rd, typ); switch (typ) { case "x": int v, c1, c2, c3, c4; pickV(rd, v, c1, c2, c3, c4); auto e = t.parent[a[v]] == b[v] ? a[v] : b[v]; st[t.path[e]][t.depthInPath(e)] = mat([[c1, c2], [c3, c4]]); break; case "g": int i, j; pickV(rd, i, j); auto ans = mat.unit(2); while (t.head[i] != t.head[j]) { ans = st[t.path[j]][0..t.depthInPath(j)+1] * ans; j = t.parent[t.head[j]]; } ans = st[t.path[i]][t.depthInPath(i)+1..t.depthInPath(j)+1] * ans; writeln(ans[0][0], " ", ans[0][1], " ", ans[1][0], " ", ans[1][1]); break; default: assert(0); } } } struct Graph(N = int) { alias Node = N; Node n; Node[][] g; alias g this; this(Node n) { this.n = n; g = new Node[][](n); } void addEdge(Node u, Node v) { g[u] ~= v; } void addEdgeB(Node u, Node v) { g[u] ~= v; g[v] ~= u; } } struct Tree(Graph) { import std.algorithm, std.container; alias Node = Graph.Node; Graph g; alias g this; Node root; Node[] parent; int[] size, depth; this(ref Graph g) { this.g = g; this.n = g.n; } ref auto rootify(Node r) { this.root = r; parent = new Node[](g.n); depth = new int[](g.n); depth[] = -1; struct UP { Node u, p; } auto st1 = SList!UP(UP(r, r)); auto st2 = SList!UP(); while (!st1.empty) { auto up = st1.front, u = up.u, p = up.p; st1.removeFront(); parent[u] = p; depth[u] = depth[p] + 1; foreach (v; g[u]) if (v != p) { st1.insertFront(UP(v, u)); st2.insertFront(UP(v, u)); } } size = new int[](g.n); size[] = 1; while (!st2.empty) { auto up = st2.front, u = up.u, p = up.p; st2.removeFront(); size[p] += size[u]; } return this; } auto children(Node u) { return g[u].filter!(v => v != parent[u]); } } ref auto makeTree(Graph)(ref Graph g) { return Tree!Graph(g); } struct HlDecomposition(Tree) { import std.container; alias Node = Tree.Node; Tree t; alias t this; Node[] head, path; Node[][] paths; this(ref Tree t) { this.t = t; auto n = t.n; head = new Node[](n); head[] = n; struct US { Node u, s; } auto st = SList!US(US(t.root, t.root)); while (!st.empty) { auto us = st.front, u = us.u, s = us.s; st.removeFront(); head[u] = s; auto z = n; foreach (v; t[u]) if (head[v] == n && (z == n || t.size[z] < t.size[v])) z = v; foreach (v; t[u]) if (head[v] == n) st.insertFront(US(v, v == z ? s : v)); } } auto makePath(Node r) { auto pathIndex = 0; path = new Node[](t.n); auto q = DList!Node(r); while (!q.empty) { auto u = q.front; q.removeFront(); if (u == head[u]) { path[u] = pathIndex++; paths ~= [u]; } else { path[u] = path[head[u]]; paths[path[u]] ~= u; } foreach (v; t[u]) if (v != t.parent[u]) q.insertBack(v); } } auto depthInPath(Node n) { return t.depth[n] - t.depth[head[n]]; } auto lca(Node u, Node v) { while (head[u] != head[v]) if (t.depth[head[u]] < t.depth[head[v]]) v = t.parent[head[v]]; else u = t.parent[head[u]]; return t.depth[u] < t.depth[v] ? u : v; } } ref auto hlDecomposition(Tree)(ref Tree t) { return HlDecomposition!(Tree)(t); } class SegmentTree(T, alias pred = "a + b") { import core.bitop, std.functional; alias predFun = binaryFun!pred; const size_t n, an; T[] buf; T unit; this(size_t n, T unit = T.init) { this.n = n; this.unit = unit; an = n == 1 ? 1 : (1 << ((n-1).bsr + 1)); buf = new T[](an*2); if (T.init != unit) buf[] = unit; } this(T[] init, T unit = T.init) { this(init.length, unit); buf[an..an+n][] = init[]; foreach_reverse (i; 1..an) buf[i] = predFun(buf[i*2], buf[i*2+1]); } void opIndexAssign(T val, size_t i) { buf[i += an] = val; while (i /= 2) buf[i] = predFun(buf[i*2], buf[i*2+1]); } pure T opSlice(size_t l, size_t r) { l += an; r += an; T r1 = unit, r2 = unit; while (l != r) { if (l % 2) r1 = predFun(r1, buf[l++]); if (r % 2) r2 = predFun(buf[--r], r2); l /= 2; r /= 2; } return predFun(r1, r2); } pure T opIndex(size_t i) { return buf[i+an]; } pure size_t opDollar() { return n; } } struct Matrix(T) { size_t r, c; T[][] a; alias a this; static ref auto unit(size_t n) { auto r = Matrix!T(n, n); foreach (i; 0..n) r[i][i] = 1; return r; } this(size_t r, size_t c) { this.r = r; this.c = c; a = new T[][](r, c); static if (T.init != 0) foreach (i; 0..r) a[i][] = 0; } this(U)(U[][] b) { r = b.length; c = b[0].length; a = new T[][](r, c); foreach (i; 0..r) foreach (j; 0..c) a[i][j] = b[i][j]; } ref auto dup() { auto x = Matrix!T(r, c); foreach (i; 0..r) x[i][] = a[i][]; return x; } ref auto opBinary(string op)(Matrix!T b) if (op == "+" || op == "-") in { assert(r == b.r && c == b.c); } body { auto x = Matrix!T(r, c); foreach (i; 0..r) foreach (j; 0..c) x[i][j] = mixin("a[i][j]"~op~"b[i][j]"); return x; } ref auto opBinary(string op: "*")(Matrix!T b) in { assert(c == b.r); } body { auto x = Matrix!T(r, b.c); foreach (i; 0..r) foreach (j; 0..b.c) foreach (k; 0..c) x[i][j] += a[i][k]*b[k][j]; return x; } ref auto opBinary(string op: "*")(T[] b) in { assert(c == b.length); } body { auto x = new T[](r); static if (T.init != 0) x[] = 0; foreach (i; 0..r) foreach (j; 0..c) x[i] += a[i][j]*b[j]; return x; } } struct FactorRing(int m, bool pos = false) { version(BigEndian) union { long vl; struct { int vi2; int vi; } } else union { long vl; int vi; } alias FR = FactorRing!(m, pos); @property static init() { return FR(0); } @property int value() { return vi; } @property void value(int v) { vi = mod(v); } alias value this; this(int v) { vi = v; } this(int v, bool runMod) { vi = runMod ? mod(v) : v; } this(long v) { vi = mod(v); } ref auto opAssign(int v) { vi = v; return this; } pure auto mod(int v) const { static if (pos) return v%m; else return (v%m+m)%m; } pure auto mod(long v) const { static if (pos) return cast(int)(v%m); else return cast(int)((v%m+m)%m); } static if (!pos) pure ref auto opUnary(string op: "-")() { return FR(mod(-vi)); } static if (m < int.max / 2) { pure ref auto opBinary(string op)(int r) if (op == "+" || op == "-") { return FR(mod(mixin("vi"~op~"r"))); } ref auto opOpAssign(string op)(int r) if (op == "+" || op == "-") { vi = mod(mixin("vi"~op~"r")); return this; } } else { pure ref auto opBinary(string op)(int r) if (op == "+" || op == "-") { return FR(mod(mixin("vl"~op~"r"))); } ref auto opOpAssign(string op)(int r) if (op == "+" || op == "-") { vi = mod(mixin("vl"~op~"r")); return this; } } pure ref auto opBinary(string op: "*")(int r) { return FR(mod(vl*r)); } ref auto opOpAssign(string op: "*")(int r) { vi = mod(vl*r); return this; } pure ref auto opBinary(string op)(ref FR r) if (op == "+" || op == "-" || op == "*") { return opBinary!op(r.vi); } ref auto opOpAssign(string op)(ref FR r) if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(r.vi); } }