// C++11 #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define pv(val) cerr << #val << '=' << (val) << endl #define pvn(name, val) cerr << name << '=' << (val) << endl #define pl cerr << '@' << __LINE__ << endl static constexpr uint64_t u0 = 0ull; static constexpr uint64_t u1 = 1ull; static constexpr uint64_t uF = numeric_limits::max(); #ifdef _MSC_VER //dummy int __builtin_popcountll(unsigned long long) { return 0; } int __builtin_clzll(unsigned long long) { return 0; } #endif template ostream& operator<<(ostream& os, vector const& vec) { if (vec.empty()) { os << "{}"; } else { os << '{'; for (size_t i = 0; i < vec.size() - 1; i++) os << vec[i] << ", "; os << vec.back() << '}'; } return os; } template ostream& operator<<(ostream& os, array const& arr) { if (arr.empty()) { os << "{}"; } else { os << '{'; for (size_t i = 0; i < arr.size() - 1; i++) os << arr[i] << ", "; os << arr.back() << '}'; } return os; } class Timer { using clock = chrono::high_resolution_clock; clock::time_point startTime; template auto elapsed() const { return chrono::duration_cast(clock::now() - startTime).count(); } public: Timer() { restart(); } void restart() { startTime = clock::now(); } auto milli() const { return elapsed(); } auto micro() const { return elapsed(); } }; Timer globalTimer; class Xorshift128 { uint32_t x, y, z, w, t; public: using result_type = uint32_t; Xorshift128(uint32_t seed = 12433) : x(123456789), y(362436069), z(521288629), w(seed) {} static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } result_type operator()() { t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } }; template > class PriorityQueue { public: using container = vector; using iterator = typename container::iterator; using const_iterator = typename container::const_iterator; private: container queue_; size_t last_; public: PriorityQueue() { last_ = 0; } size_t size() const { return last_; } const_iterator begin() const { return queue_.begin(); } const_iterator end() const { return queue_.begin() + last_; } bool full() const { return size() == capacity(); } void setCapacity(size_t n) { queue_.resize(n); } size_t capacity() const { return queue_.size(); } void push(const T& val) { queue_[last_] = val; last_++; std::push_heap(queue_.begin(), queue_.begin() + last_, Comp()); } void push(T&& val) { queue_[last_] = std::move(val); last_++; std::push_heap(queue_.begin(), queue_.begin() + last_, Comp()); } void clear() { last_ = 0; } T const& top() const { return queue_[0]; } void pop() { std::pop_heap(queue_.begin(), queue_.begin() + last_, Comp()); last_--; } }; struct Line { bool dir; //true: yoko, false: tate int l; int a; int p; }; void solve(array L, array board) { Xorshift128 x128; array ans; for (int i = 0; i < 500; i++) { ans[i].dir = i & 1; ans[i].l = L[i]; ans[i].a = x128() % 60; ans[i].p = x128() % (61 - ans[i].l); } int score = 0; for (int i = 0; i < 500; i++) { if (ans[i].dir) { score += __builtin_popcountll(board[ans[i].a]); auto x = uF >> (64 - ans[i].l); x = x & (x << ans[i].p); board[ans[i].a] ^= x; score -= __builtin_popcountll(board[ans[i].a]); } else { auto x = u1 << (ans[i].a); for (int j = ans[i].p; j < ans[i].p + ans[i].l; j++) { score += (board[j] & x == 0) ? -1 : 1; board[j] ^= x; } } } for (int i = 0; i < 500; i++) { if (ans[i].dir) { printf("%d %d %d %d\n", 60 - ans[i].p, ans[i].a + 1, 60 - (ans[i].p + ans[i].l - 1), ans[i].a + 1); } else { printf("%d %d %d %d\n", 60 - ans[i].a, ans[i].p + 1, 60 - ans[i].a, ans[i].p + ans[i].l); } } pv(score); } int main(void) { cin.tie(0); ios::sync_with_stdio(false); int N, K; array L; array board; cin >> N >> K; for (int i = 0; i < 500; i++) { cin >> L[i]; } string line; for (int i = 0; i < 60; i++) { cin >> line; std::bitset<64> bs(line); board[i] = bs.to_ullong(); } solve(L, board); return 0; }