//////////////////////////////////////// /// tu3 pro-con template /// //////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //// MACRO //// #define countof(a) (sizeof(a)/sizeof(a[0])) #define REP(i,n) for (int i = 0; i < (n); i++) #define RREP(i,n) for (int i = (n)-1; i >= 0; i--) #define FOR(i,s,n) for (int i = (s); i < (n); i++) #define RFOR(i,s,n) for (int i = (n)-1; i >= (s); i--) #define pos(c,i) c.being() + (i) #define allof(c) c.begin(), c.end() #define aallof(a) a, countof(a) #define partof(c,i,n) c.begin() + (i), c.begin() + (i) + (n) #define apartof(a,i,n) a + (i), a + (i) + (n) #define long long long #define EPS 1e-9 #define INF (1L << 28) #define LINF (1LL << 60) #define PREDICATE(t,a,exp) [&](const t & a) -> bool { return exp; } #define COMPARISON_T(t) bool(*)(const t &, const t &) #define COMPARISON(t,a,b,exp) [&](const t & a, const t & b) -> bool { return exp; } #define CONVERTER(TSrc,t,TDest,exp) [&](const TSrc &t)->TDest { return exp; } inline int sign_of(double x) { return (abs(x) < EPS ? 0 : x > 0 ? 1 : -1); } inline bool inRange(int val, int min, int max) { return val >= min && val < max; } inline bool inRange(double val, double min, double max) { return val - min > -EPS && val - max < EPS; } inline bool inRange(int x, int y, int W, int H) { return x >= 0 && x < W && y >= 0 && y < H; } // W,H含まない template struct vevector : public vector> { vevector(int n = 0, int m = 0, const T &initial = T()) : vector>(n, vector(m, initial)) { } }; template struct vevevector : public vector> { vevevector(int n = 0, int m = 0, int l = 0, const T &initial = T()) : vector>(n, vevector(m, l, initial)) { } }; template struct vevevevector : public vector> { vevevevector(int n = 0, int m = 0, int l = 0, int k = 0, const T &initial = T()) : vector>(n, vevevector(m, l, k, initial)) { } }; //// i/o helper //// namespace std { template inline istream & operator >> (istream & in, pair &p) { in >> p.first >> p.second; return in; } template inline ostream & operator << (ostream &out, const pair &p) { out << p.first << " " << p.second; return out; } } template T read() { T t; cin >> t; return t; } template vector read(int n) { vector v; REP(i, n) { v.push_back(read()); } return v; } template vevector read(int n, int m) { vevector v; REP(i, n) v.push_back(read(m)); return v; } template vector readjag() { return read(read()); } template vevector readjag(int n) { vevector v; REP(i, n) v.push_back(readjag()); return v; } template struct iter_pair_t { T beg, end; }; template iter_pair_t iter_pair(T beg, T end) { return iter_pair_t{beg, end}; } template ostream & operator << (ostream &out, const iter_pair_t &v) { std::copy(v.beg, v.end, ostream_iterator(out, " ")); return out; } template ostream & operator << (ostream &out, const vector &v) { return out << iter_pair(begin(v), end(v)); } template ostream & operator << (ostream &out, const set &v) { return out << iter_pair(begin(v), end(v)); } template ostream & operator << (ostream &out, const map &v) { return out << iter_pair(begin(v), end(v)); } struct _Reader { istream &cin;template _Reader operator ,(T &rhs) { cin >> rhs; return *this; } }; struct _Writer { ostream &cout; bool f{false}; template _Writer operator ,(const T &rhs) { cout << (f ? " " : "") << rhs; f = true; return *this; } }; #define READ(t,...) t __VA_ARGS__; (_Reader{cin}), __VA_ARGS__ #define WRITE(...) (_Writer{cout}), __VA_ARGS__; cout << endl #define DEBUG(...) (_Writer{cerr}), __VA_ARGS__; cerr << endl void solve(); int main() { cin.tie(0); ios_base::sync_with_stdio(false); solve(); return 0; } // warshall_floyd // O(n^3) template void warshall_floyd(vector> &cost) { size_t n = cost.size(); REP(k, n) REP(i, n) REP(j, n) cost[i][j] = min(cost[i][j], cost[i][k] + cost[k][j]); } // 強連結成分 O(n^2) // 巡回グラフを頂点集合の非巡回グラウ府に変換できる。 // memo: もっと速いアルゴリズムもある。 template vevector strong_connection_components(const vevector &graph) { vevector ren; int N = graph.size(); REP(i, N) { bool found = false; REP(j, ren.size()) { int r = ren[j][0]; if (graph[i][r] < INF && graph[r][i] < INF) { ren[j].push_back(i); found = true; break; } } if (!found) { ren.push_back({ i }); } } return ren; } // 選択ソート O(n^2) template void selection_sort(Iter first, Iter last, Pred pred = less() ) { for (Iter i = first; i != last; ++i) { Iter minI = i; for (Iter j = i; j != last; ++j) { if (pred(*j, *minI)) { minI = j; } } swap(*i, *minI); } } //////////////////// /// template end /// //////////////////// void solve() { READ(int, N); auto S = read>(N); vevector route = vevector(N, N, INF); REP(i,N) { route[S[i].second - 1][i] = 0; } warshall_floyd(route); vevector ren = strong_connection_components(route); selection_sort(allof(ren), COMPARISON(vector, a, b, route[a[0]][b[0]] == 0)); int score = 0; REP(i, ren.size()) { bool allHangaku = false; FOR(j, 0, i) { allHangaku |= route[ren[j][0]][ren[i][0]] == 0; } auto it = min_element(allof(ren[i]), COMPARISON(int, a, b, S[a].first < S[b].first)); swap(*ren[i].begin(), *it); if (allHangaku) { score += S[ren[i][0]].first; } else { score += S[ren[i][0]].first * 2; } FOR(j, 1, ren[i].size()) { score += S[ren[i][j]].first; } } printf("%3.1f\n", score / 2.0); }