from operator import itemgetter N = None M = None K = None edges = [] must = [] def main(): get_instance() check_constraint() solve() def solve(): ans = sum(edges[i][2] for i in range(M)) uf = UnionFind(N) for i in range(K): ai, bi, ci = edges[must[i]-1] uf.unite(ai-1, bi-1) ans -= ci es = sorted(edges, key=itemgetter(2)) for i in range(M): if uf.numcc == 1: break ai, bi, ci = es[i] if not uf.same(ai-1, bi-1): uf.unite(ai-1, bi-1) ans -= ci print(ans) def get_instance(): global N, M, K, edges, must N, M, K = map(int, input().split()) edges = [tuple(map(int, input().split())) for i in range(M)] must = [int(input()) for i in range(K)] def check_constraint(): assert 1 <= N <= 10**5, "Out of Range" assert 0 <= M <= min(N*(N-1)//2, 10**5), "Out of Range" assert 0 <= K <= M, "Out of Range" nwes = [] for i in range(M): ai, bi, ci = edges[i] assert 1 <= ai < bi <= N, "Out of Range" assert 1 <= ci <= 10**9, "Out of Range" nwes.append((ai, bi)) assert len(set(nwes)) == M, "Not Simple" for i in range(K): assert 1 <= must[i] <= M, "Out of Range" if i > 0: assert must[i] > must[i-1], "Not Sorted" assert is_connected(), "Not Connected" def is_connected(): uf = UnionFind(N) for i in range(M): ai, bi, ci = edges[i] uf.unite(ai-1, bi-1) return all(uf.same(0, i) for i in range(N)) class UnionFind: def __init__(self, N): self.p = list(range(N)) self.rank = [0] * N self.size = [1] * N self.numcc = N def find_root(self, x): if self.p[x] != x: self.p[x] = self.find_root(self.p[x]) return self.p[x] def same(self, x, y): return self.find_root(x) == self.find_root(y) def unite(self, x, y): u = self.find_root(x) v = self.find_root(y) if u == v: return if self.rank[u] < self.rank[v]: self.p[u] = v self.size[v] += self.size[u] self.size[u] = 0 else: self.p[v] = u self.size[u] += self.size[v] self.size[v] = 0 if self.rank[u] == self.rank[v]: self.rank[u] += 1 self.numcc -= 1 def get_size(self, x): return self.size[self.find_root(x)] if __name__ == '__main__': main()