#include using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(int i = (l) ; i < (r); i++) #define incII(i, l, r) for(int i = (l) ; i <= (r); i++) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--) #define decII(i, l, r) for(int i = (r) ; i >= (l); i--) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define UB upper_bound #define LB lower_bound #define PQ priority_queue #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it) #define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it) template bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } template T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } // ---- ---- template class SegmentTree { private: T * a = NULL; int N = -1, S; function F; T I; bool is_available = false; public: SegmentTree() { } SegmentTree(int n, function func, T id) { init(n, func, id); } void init(int size, function func, T id) { assert(size > 0); N = size; F = func; I = id; S = 1; while(S < size) { S *= 2; } delete[] a; a = new T[S * 2]; inc(i, S * 2) { a[i] = I; } is_available = true; } T operator[](int p) { assert(inID(p, 0, N)); p += S; return a[p]; } T & ref(int p) { is_available = false; assert(inID(p, 0, N)); p += S; return a[p]; } void calc() { decID(i, 1, S) { a[i] = F(a[i * 2], a[i * 2 + 1]); } is_available = true; } void apply(int p, function op) { assert(inID(p, 0, N)); p += S; op(a[p]); while(p != 1) { p /= 2; a[p] = F(a[p * 2], a[p * 2 + 1]); } } T fold_ID(int l, int r, bool loop = false) { assert(is_available); assert(inII(l, 0, N)); assert(inII(r, 0, N)); if(loop && l >= r) { return F(fold_ID(l, N), fold_ID(0, r)); } assert(l <= r); l += S; r += S; T v = I, w = I; while(l < r) { if(l + 1 == r) { v = F(v, a[l]); break; } if(l % 2 == 1) { v = F(v, a[l]); } if(r % 2 == 1) { w = F(a[r - 1], w); } l = (l + 1) / 2; r = r / 2; } return F(v, w); } T fold_II(int l, int r, bool loop = false) { return fold_ID(l , r + 1, loop); } T fold_CD(int l, int r, bool loop = false) { return fold_ID(l + 1, r , loop); } T fold_CI(int l, int r, bool loop = false) { return fold_ID(l + 1, r + 1, loop); } }; #define OP(op) [&](auto A, auto B) { return op; } #define AP(op) [&](auto & A) { op; } // ---- ---- template struct Matrix { vector> a; Matrix(const vector> & v = { }) { init(v); } void init(const vector> & v) { a = vector>(N, vector(N, 0)); assert(v.size() <= N); inc(i, v.size()) { assert(v[i].size() <= N); inc(j, v[i].size()) { a[i][j] = v[i][j]; } } } vector & operator[](int i) { return a[i]; } Matrix id() { Matrix e; inc(i, N) { e[i][i] = 1; } return e; } Matrix tp() { Matrix b; inc(i, N) { inc(j, N) { b[j][i] = a[i][j]; } } return b; } Matrix & operator+=(const Matrix & b) { inc(i, N) { inc(j, N) { a[i][j] += b.a[i][j]; } } return (*this); } Matrix & operator*=(T b) { inc(i, N) { inc(j, N) { a[i][j] *= b; } } return (*this); } Matrix & operator*=(const Matrix & b) { Matrix c; inc(i, N) { inc(j, N) { inc(k, N) { c[i][j] += a[i][k] * b.a[k][j]; } } } return (*this) = c; } Matrix & operator^=(LU b) { Matrix t[64], c = id(); int D = 64; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { t[i] = (i == 0 ? (*this) : t[i - 1] * t[i - 1]); } inc(i, D) { if((b >> i) & 1) { c *= t[i]; } } return (*this) = c; } Matrix operator+(const Matrix & b) const { Matrix c = a; return c += b; } Matrix operator*( T b) const { Matrix c = a; return c *= b; } Matrix operator*(const Matrix & b) const { Matrix c = a; return c *= b; } Matrix operator^( LU b) const { Matrix c = a; return c ^= b; } }; template Matrix operator*(T a, const Matrix & b) { return b * a; } template ostream & operator<<(ostream & os, const Matrix & m) { inc(i, N) { inc(j, N) { os << m.a[i][j] << " "; } os << endl; } return os; } // ---- ---- template class ModInt { private: LL v; static LL m; public: ModInt(LL vv = 0) { setval(vv); } ModInt & setval(LL vv) { v = (vv % m + m) % m; return (*this); } static void setmod(LL mm) { m = mm; } LL getval() const { return v; } ModInt & operator+=(const ModInt & b) { return setval(v + b.v); } ModInt & operator-=(const ModInt & b) { return setval(v - b.v); } ModInt & operator*=(const ModInt & b) { return setval(v * b.v); } ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); } ModInt & operator^=( LU b) { return setval(ex(v, b)); } ModInt operator+ ( ) { return ModInt(+v); } ModInt operator- ( ) { return ModInt(-v); } ModInt operator+ (const ModInt & b) { return ModInt(v + b.v); } ModInt operator- (const ModInt & b) { return ModInt(v - b.v); } ModInt operator* (const ModInt & b) { return ModInt(v * b.v); } ModInt operator/ (const ModInt & b) { return ModInt(v * b.inv()); } ModInt operator^ ( LU b) { return ModInt(ex(v, b)); } LL inv() const { LL x = (ex_gcd(v, m).FI + m) % m; assert(x * v % m == 1); return x; } LL ex(LL a, LU b) const { LL D = 64, x[64], y = 1; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % m; } inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= m; } } return y; } pair ex_gcd(LL a, LL b) const { if(b == 0) { return MP(1, 0); } auto p = ex_gcd(b, a % b); return MP(p.SE, p.FI - (a / b) * p.SE); } }; template LL ModInt::m; template ModInt operator+(LL a, const ModInt & b) { return ModInt(a + b.getval()); } template ModInt operator-(LL a, const ModInt & b) { return ModInt(a - b.getval()); } template ModInt operator*(LL a, const ModInt & b) { return ModInt(a * b.getval()); } template ModInt operator/(LL a, const ModInt & b) { return ModInt(a * b.inv()); } template istream & operator>>(istream & is, ModInt & b) { LL v; is >> v; b.setval(v); return is; } template ostream & operator<<(ostream & os, const ModInt & b) { return (os << b.getval()); } // ---- ---- int main() { int n, q; cin >> n >> q; ModInt<0>::setmod(1e9 + 7); typedef Matrix, 4> MM; SegmentTree st(n, OP(B * A), MM().id()); inc(i, n) { st.ref(i).init({ {1}, {0, 1}, {1}, {1} }); } st.calc(); inc(qq, q) { char c; LL i, v; cin >> c; if(c == 'x') { cin >> i >> v; st.apply(i, AP(A.a[1][3] = v)); } if(c == 'y') { cin >> i >> v; st.apply(i, AP( A.a[2][2] = v; A.a[3][2] = 2 * v; A.a[3][3] = v * v; )); } if(c == 'a') { cin >> i; cout << (st.fold_ID(0, i) * MM({ {1}, {1}, {1}, {1} }))[1][0] << "\n"; } } return 0; }