fn solve(_reader: R, _writer: &mut W) { let mut _scanner = Scanner::new(_reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.next::<$T>().unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($T:ty; $n:expr $(; $m:expr)*) => {{ let mut vec = Vec::with_capacity($n); for _ in 0..$n { vec.push(scan!($T $(; $m)*)); } vec }}; ($($i:tt : $T:ty),+; $n:expr) => {{ let mut vecs = ($(Vec::with_capacity({ $i; $n })),+); for _ in 0..$n {$( vecs.$i.push(scan!($T)); )+} vecs }}; } #[allow(unused_macros)] macro_rules! scan_iter { ($T:ty; $n:expr) => { _scanner.take::<$T>($n).map(|x| x.unwrap()) }; } #[allow(unused_macros)] macro_rules! print { ($fmt:expr) => { write!(_writer, $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { write!(_writer, $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! println { ($fmt:expr) => { writeln!(_writer, $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { writeln!(_writer, $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! eprint { ($fmt:expr) => { #[cfg(debug_assertions)] write!(::std::io::stderr(), $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { #[cfg(debug_assertions)] write!(::std::io::stderr(), $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! eprintln { ($fmt:expr) => { #[cfg(debug_assertions)] writeln!(::std::io::stderr(), $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { #[cfg(debug_assertions)] writeln!(::std::io::stderr(), $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! dump { ($($x:expr),+) => { eprint!("[{}:{}] ", file!(), line!()); eprintln!(concat!($(stringify!($x), " = {:?}; "),+), $($x),+); }; } use cmp::{OrdAssign, Reverse}; use data_structures::SkewHeap; let n = scan!(usize); let a = scan!(i32; n); let b = scan!(i32; n); let mut pq = SkewHeap::new(); let mut ans = i32::max_value(); for i in 0..n { let mut cnt_max = 0; pq.extend(a.iter().map(|&a_i| Reverse((a_i, 0)))); for j in 0..n { let k = if i + j >= n { i + j - n } else { i + j }; let Reverse((x, cnt)) = pq.pop().unwrap(); cnt_max.max_assign(cnt + 1); pq.push(Reverse((x + b[k] / 2, cnt + 1))); } ans.min_assign(cnt_max); pq.clear(); } println!("{}", ans); } const STACK_SIZE_MEBIBYTES: Option = None; fn main() { fn run_solver() { let stdin = stdin(); let stdout = stdout(); #[cfg(debug_assertions)] let mut writer = stdout.lock(); #[cfg(not(debug_assertions))] let mut writer = ::std::io::BufWriter::new(stdout.lock()); solve(stdin.lock(), &mut writer); writer.flush().unwrap(); } if let Some(size) = STACK_SIZE_MEBIBYTES { let builder = thread::Builder::new().name("solve".to_string()).stack_size(size * 1024 * 1024); builder.spawn(run_solver).unwrap().join().unwrap(); } else { run_solver(); } } use io::Scanner; use std::io::{stdin, stdout, BufRead, Write}; use std::thread; pub mod cmp { pub use self::ord_assign::*; pub use self::reverse::*; mod ord_assign { pub trait OrdAssign: Sized + Ord { fn min_assign(&mut self, other: Self) { if other <= *self { *self = other; } } fn max_assign(&mut self, other: Self) { if other >= *self { *self = other }; } } impl OrdAssign for T {} } mod reverse { use std::cmp::Ordering; #[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Hash)] pub struct Reverse(pub T); impl PartialOrd for Reverse { fn partial_cmp(&self, other: &Self) -> Option { other.0.partial_cmp(&self.0) } } impl Ord for Reverse { fn cmp(&self, other: &Self) -> Ordering { other.0.cmp(&self.0) } } } } pub mod data_structures { pub use self::skew_heap::SkewHeap; mod skew_heap { use std::mem; #[derive(Debug, Clone)] pub struct SkewHeap { root: Link, len: usize, } impl SkewHeap { pub fn new() -> Self { SkewHeap { root: None, len: 0 } } pub fn peek(&self) -> Option<&T> { self.root.as_ref().map(|node| &node.value) } pub fn pop(&mut self) -> Option { self.root.take().map(|mut node| { self.root = Node::meld(node.left.take(), node.right.take()); self.len -= 1; node.value }) } pub fn push(&mut self, value: T) { self.root = Node::meld(self.root.take(), Some(Box::new(Node::singleton(value)))); self.len += 1; } pub fn len(&self) -> usize { self.len } pub fn is_empty(&self) -> bool { self.root.is_none() } pub fn clear(&mut self) { self.root.take(); self.len = 0; } pub fn append(&mut self, other: &mut Self) { self.root = Node::meld(self.root.take(), other.root.take()); self.len += other.len; other.len = 0; } } impl Extend for SkewHeap { fn extend>(&mut self, iter: I) { for elem in iter { self.push(elem); } } } #[derive(Debug, Clone)] struct Node { value: T, left: Link, right: Link, } type Link = Option>>; impl Node { fn singleton(value: T) -> Self { Node { value: value, left: None, right: None, } } fn meld(left: Link, right: Link) -> Link { match (left, right) { (a, None) => a, (None, b) => b, (Some(mut a), Some(mut b)) => { if a.value < b.value { mem::swap(&mut a, &mut b); } a.right = Self::meld(a.right.take(), Some(b)); a.swap_children(); Some(a) } } } fn swap_children(&mut self) { mem::swap(&mut self.left, &mut self.right); } } } } pub mod io { pub use self::from_bytes::*; pub use self::scanner::*; mod scanner { use io::FromBytes; use std::io::BufRead; use std::marker::PhantomData; pub struct Scanner { reader: R, buffer: Vec, position: usize, } impl Scanner { pub fn new(reader: R) -> Self { Scanner { reader: reader, buffer: vec![], position: 0, } } pub fn next(&mut self) -> Result { FromBytes::from_bytes(self.next_bytes().unwrap_or(&[])) } pub fn take(&mut self, n: usize) -> Take { Take { scanner: self, n: n, _marker: PhantomData, } } pub fn next_bytes(&mut self) -> Option<&[u8]> { if self.buffer.is_empty() { self.read_line(); } loop { match self.buffer.get(self.position) { Some(&b' ') => self.position += 1, Some(&b'\n') => self.read_line(), Some(_) => break, None => return None, } } let start = self.position; loop { match self.buffer.get(self.position) { Some(&b' ') | Some(&b'\n') | None => break, Some(_) => self.position += 1, } } Some(&self.buffer[start..self.position]) } fn read_line(&mut self) { self.position = 0; self.buffer.clear(); self.reader.read_until(b'\n', &mut self.buffer).unwrap(); } } pub struct Take<'a, R: 'a, T> { scanner: &'a mut Scanner, n: usize, _marker: PhantomData T>, } impl<'a, R: BufRead, T: FromBytes> Iterator for Take<'a, R, T> { type Item = Result; fn next(&mut self) -> Option { if self.n > 0 { self.n -= 1; Some(self.scanner.next()) } else { None } } fn size_hint(&self) -> (usize, Option) { (self.n, Some(self.n)) } } impl<'a, R: BufRead, T: FromBytes> ExactSizeIterator for Take<'a, R, T> {} } mod from_bytes { use misc::{ByteChar, ByteString}; use std::str; use std::str::FromStr; #[derive(Debug)] pub struct FromBytesError; pub trait FromBytes: Sized { type Err; fn from_bytes(bytes: &[u8]) -> Result; } impl FromBytes for ByteChar { type Err = FromBytesError; fn from_bytes(bytes: &[u8]) -> Result { if bytes.len() == 1 { Ok(ByteChar(*unsafe { bytes.get_unchecked(0) })) } else { Err(FromBytesError) } } } impl FromBytes for ByteString { type Err = FromBytesError; fn from_bytes(bytes: &[u8]) -> Result { Ok(ByteString(bytes.iter().cloned().map(ByteChar).collect())) } } impl FromBytes for T { type Err = T::Err; fn from_bytes(bytes: &[u8]) -> Result { let s = if cfg!(debug_assertions) { str::from_utf8(bytes).unwrap() } else { unsafe { str::from_utf8_unchecked(bytes) } }; T::from_str(s) } } } } pub mod misc { pub use self::byte_char::*; pub use self::byte_string::*; mod byte_char { use std::fmt::{Debug, Display, Error, Formatter}; #[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> Result<(), Error> { write!(f, "b\'{}\'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> Result<(), Error> { write!(f, "{}", self.0 as char) } } } mod byte_string { use misc::ByteChar; use std::fmt::{Debug, Display, Error, Formatter}; #[derive(Clone, PartialOrd, Ord, PartialEq, Eq, Hash)] pub struct ByteString(pub Vec); impl Debug for ByteString { fn fmt(&self, f: &mut Formatter) -> Result<(), Error> { write!(f, "b\"")?; for &c in &self.0 { write!(f, "{}", c.0 as char)?; } write!(f, "b\"") } } impl Display for ByteString { fn fmt(&self, f: &mut Formatter) -> Result<(), Error> { for &c in &self.0 { write!(f, "{}", c.0 as char)?; } Ok(()) } } } }