#include "bits/stdc++.h" using namespace std; typedef long long ll; typedef pair pii; typedef pair pll; const int INF = 1e9; const ll LINF = 1e18; template ostream& operator << (ostream& out,const pair& o){ out << "(" << o.first << "," << o.second << ")"; return out; } template ostream& operator << (ostream& out,const vector V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; } template ostream& operator << (ostream& out,const vector > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; } template ostream& operator << (ostream& out,const map mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; } /* 問題文============================================================ ================================================================= 解説============================================================= ================================================================ */ struct DINIC{ #define MAX_V 100 typedef long long ll; typedef ll CapType; struct edge { int to; // 行き先 CapType cap; // 容量 int rev; // 逆辺 edge() {} edge(int to, CapType cap, int rev) :to(to), cap(cap), rev(rev) {} }; vector G[MAX_V]; // グラフの隣接リスト表現 ll level[MAX_V]; // sからの距離 ll iter[MAX_V]; // どこまで調べ終わったか // fromからtoへ向かう容量capの辺をグラフに追加する void add_directed_edge(int from, int to, CapType cap) { G[from].push_back(edge(to, cap, (int)G[to].size())); G[to].push_back(edge(from, 0, (int)G[from].size() - 1)); } void add_undirected_edge(int from, int to, CapType cap) { G[from].push_back(edge(to, cap, (int)G[to].size())); G[to].push_back(edge(from, cap, (int)G[from].size() - 1)); } // sからの最短距離をBFSで計算する void bfs(int s){ fill(level,level+MAX_V,-1); queue q; level[s] = 0; q.push(s); while(!q.empty()){ int v = q.front(); q.pop(); for(int i = 0; i < (int)G[v].size();i++){ edge& e = G[v][i]; if(e.cap > 0 && level[e.to] < 0){ level[e.to] = level[v] + 1; q.push(e.to); } } } } // 増加パスをDFSで探す CapType dfs(int v, int t,CapType f){ if(v == t) return f; for(ll &i = iter[v]; i < G[v].size();i++){ edge &e = G[v][i]; if(e.cap > 0 && level[v] < level[e.to]){ CapType d = dfs(e.to,t,min(f,e.cap)); if(d > 0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; } CapType max_flow(int s,int t){ CapType flow = 0; for(;;){ bfs(s); if(level[t] < 0) return flow; fill(iter,iter+MAX_V,0); CapType f; while((f = dfs(s,t,LINF)) > 0){ flow += f; } } } }; ll solve(){ ll res = 0; int N; cin >> N; vector B(N),C(N); for(int i = 0; i < N;i++) cin >> B[i] >> C[i]; int M; cin >> M; vector D(M),E(M); for(int i = 0; i < M;i++) cin >> D[i] >> E[i]; int S = 2*N,T = S+1; DINIC dinic; for(int i = 0; i < N;i++) res += B[i]+C[i]; for(int i = 0; i < N;i++){ dinic.add_directed_edge(S,i,B[i]); dinic.add_directed_edge(i,i+N, INF); dinic.add_directed_edge(i+N,T,C[i]); } for(int i = 0; i < M;i++){ dinic.add_directed_edge(D[i], E[i]+N,INF); } res -= dinic.max_flow(S, T); return res; } int main(void) { cin.tie(0); ios_base::sync_with_stdio(false); cout << solve() << endl; return 0; }