package com.company; import java.io.*; import java.util.*; import java.util.stream.Stream; /** * @author baito */ class P implements Comparable

{ int x, y; P(int a, int b) { x = a; y = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof P)) return false; P p = (P) o; return x == p.x && y == p.y; } @Override public int hashCode() { return Objects.hash(x, y); } @Override public int compareTo(P p) { return x == p.x ? y - p.y : x - p.x; //xで昇順にソート //return (x == p.x ? y - p.y : x - p.x) * -1; //xで降順にソート //return y == p.y ? x - p.x : y - p.y;//yで昇順にソート //return (y == p.y ? x - p.x : y - p.y)*-1;//yで降順にソート } } @SuppressWarnings("unchecked") public class Main { static StringBuilder sb = new StringBuilder(); static int INF = 1234567890; static int MINF = -1234567890; static long LINF = 123456789123456789L; static long MLINF = -123456789123456789L; static long MOD = 1000000007; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static long[] Fa;//factorial static boolean[] isPrime; static int[] primes; static char[][] map; static long maxRes = MLINF; static long minRes = LINF; static int N; static int a, b; static int ai, bi; static int s, t; static int[] A, B; static int bigCost = 10000; public static void main(String[] args) { //longを忘れるなオーバーフローするぞ N = ni(); a = ni(); A = nia(a); b = ni(); B = nia(b); long startTime = System.currentTimeMillis(); PrimalDual pri = new PrimalDual(500); s = 498; t = 499; int bplus = 200; for (int i = 0; i < a; i++) { pri.addEdge(s, i, 1, A[i] * 10); } for (int i = 0; i < b; i++) { pri.addEdge(i + bplus, t, 1, 100 - B[i]); } for (int from = 0; from < a; from++) { for (int to = 0; to < b; to++) { if (A[from] <= B[to]) pri.addEdge(from, to + bplus, 1, bigCost); else pri.addEdge(from, to + bplus, 1, A[from] - B[to]); } } ai = a; bi = bplus + b; System.out.println(N - pri.solve(s, t, N)); long endTime = System.currentTimeMillis(); System.err.println(endTime - startTime); } static class PrimalDual//最小費用流 { static ArrayList[] edges; static boolean[] useda, usedb; PrimalDual(int n) { edges = Stream.generate(ArrayList::new).limit(n).toArray(ArrayList[]::new); useda = new boolean[n]; usedb = new boolean[n]; } public static void addEdge(int f, int t, long ca, long co) { edges[f].add(new Edge(t, ca, co, edges[t].size())); edges[t].add(new Edge(f, 0, -co, edges[f].size() - 1)); } static class Dist implements Comparable { int v; long dist; Dist(long a, int b) { dist = a; v = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof Dist)) return false; Dist d = (Dist) o; return dist == d.dist && v == d.v; } @Override public int hashCode() { return Objects.hash(dist, v); } @Override public int compareTo(Dist d) { return dist > d.dist ? 1 : -1; //xで昇順にソート //return (dist == d.dist ? v - d.v : dist - d.dist) * -1; //xで降順にソート //return v == d.v ? dist - d.dist : v - d.v;//yで昇順にソート //return (v == d.v ? dist - d.dist : v - d.v)*-1;//yで降順にソート } } public static void addHand(long usedf) { int pastai = ai; int pastbi = bi; if (usedf % b == 0) { //ゴールへ貼る for (int _ = 0; _ < b; _++) { addEdge(bi++, t, 1, 100 - B[(bi - 1 - 200) % b]); } //aから新しいbに for (int from = 0; from < ai; from++) { for (int to = pastbi; to < pastbi + b; to++) { int av = A[from % a]; int bv = B[(to - 200) % b]; if (av <= bv) { addEdge(from, to, 1, bigCost); } else { addEdge(from, to, 1, av - bv); } } } } if (usedf % a == 0) { //スタートから貼る for (int _ = 0; _ < a; _++) { addEdge(s, ai++, 1, A[(ai - 1) % a] * 10); } //bへ貼る for (int from = pastai; from < pastai + a; from++) { for (int to = 200; to < bi; to++) { int av = A[from % a]; int bv = B[(to - 200) % b]; if (usedb[to]) continue; if (av <= bv) addEdge(from, to, 1, bigCost); else addEdge(from, to, 1, av - bv); } } } } //最小の費用流 static long solve(int s, int t, long f) { int V = edges.length; int[] prevv = new int[V]; int[] preve = new int[V]; long[] dist = new long[V]; long[] h = new long[V]; long res = 0; int remf = (int) f; while (f > 0) { Arrays.fill(dist, INF); dist[s] = 0; PriorityQueue que = new PriorityQueue<>(); que.add(new Dist(0, s)); while (!que.isEmpty()) { Dist d = que.poll(); int v = d.v; if (dist[v] < d.dist) continue; for (int i = 0; i < edges[v].size(); i++) { Edge e = edges[v].get(i); if (useda[e.to] || usedb[e.to]) continue; if (e.cap > 0 && dist[e.to] > d.dist + e.cost + h[v] - h[e.to]) { dist[e.to] = d.dist + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.add(new Dist(dist[e.to], e.to)); } } } if (dist[t] == INF) { addHand(remf - f); continue; } for (int i = 0; i < V; i++) h[i] += dist[i]; long d = f; for (int v = t; v != s; v = prevv[v]) { d = Math.min(d, edges[prevv[v]].get(preve[v]).cap); } f -= d; res += d * (h[t] >= bigCost ? 1 : 0); ///////////////////// usedb[prevv[t]] = true; useda[prevv[prevv[t]]] = true; for (int v = t; v != s; v = prevv[v]) { Edge e = edges[prevv[v]].get(preve[v]); e.cap -= d; edges[v].get(e.rev).cap += d; } if ((remf - f) % a == 0 || (remf - f) % b == 0) addHand(remf - f); } return res; } static class Edge { int to, rev; long cap, cost; Edge(int t, long ca, long co, int r) { to = t; cap = ca; cost = co; rev = r; } } } public static void chMax(long v) { maxRes = Math.max(maxRes, v); } public static void chMin(long v) { minRes = Math.min(minRes, v); } public static boolean solve(long v) { return true; } //条件を満たす最大値、あるいは最小値を求める static long binarysearch(long ok, long ng) { //int ok = 0; //解が存在する //int ng = N; //解が存在しない while (Math.abs(ok - ng) > 1) { long mid; if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2; else mid = ok + (ng - ok) / 2; if (solve(mid)) { ok = mid; } else { ng = mid; } } return ok; } public static boolean bitGet(BitSet bit, int keta) { return bit.nextSetBit(keta) == keta; } public static boolean bitGet(long bit, int keta) { return ((bit >> keta) & 1) == 1; } public static int restoreHashA(long key) { return (int) (key >> 32); } public static int restoreHashB(long key) { return (int) (key & -1); } //正の数のみ public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static long sqrt(long v) { long res = (long) Math.sqrt(v); while (res * res > v) res--; return res; } public static int u0(int a) { if (a < 0) return 0; return a; } public static long u0(long a) { if (a < 0) return 0; return a; } public static Integer[] toIntegerArray(int[] ar) { Integer[] res = new Integer[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = ar[i]; } return res; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static int nextCombSizeK(int comb, int k) { int x = comb & -comb; //最下位の1 int y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static boolean isOutofIndex(int x, int y) { if (x < 0 || y < 0) return true; if (map[0].length <= x || map.length <= y) return true; return false; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** *

指定した値以上の先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** *

指定した値より大きい先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** *

指定した値以上の先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** *

指定した値より大きい先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある*** static long ncr(int n, int r) { if (n < r) return 0; else if (r == 0) return 1; factorial(n); return Fa[n] / (Fa[n - r] * Fa[r]); } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } static long modNcr(int n, int r) { if (n < r) return 0; long result = Fa[n]; result = result * modInv(Fa[n - r]) % MOD; result = result * modInv(Fa[r]) % MOD; return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiff(long a, long b) { long res = a % MOD - b % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { Fa = new long[n + 1]; Fa[0] = Fa[1] = 1; for (int i = 2; i <= n; i++) { Fa[i] = (Fa[i - 1] * i) % MOD; } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(char[] x) { int l = 0; int r = x.length - 1; while (l < r) { char temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(char[][] a, char c) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = c; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static int abs(int a) { return Math.abs(a); } //FastScanner static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer tokenizer = null; public static String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public static String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public static long nl() { return Long.parseLong(next()); } public static int ni() { return Integer.parseInt(next()); } public static double nd() { return Double.parseDouble(next()); } public static int[] nia(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } //1-index public static int[] niao(int n) { int[] a = new int[n + 1]; for (int i = 1; i < n + 1; i++) { a[i] = ni(); } return a; } public static int[] niad(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni() - 1; } return a; } public static int[][] nit(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni(); } } return a; } public static int[][] nitd(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni() - 1; } } return a; } //複数の配列を受け取る public static void nia2(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = ni(); b[i] = ni(); c[i] = ni(); } } //複数の配列を受け取る public static void nia3(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = ni(); b[i] = ni(); c[i] = ni(); } } public static char[] nca(int n) { char[] a = next().toCharArray(); return a; } public static char[][] nct(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public static char[][] ncts(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public static char[][] nctp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public static char[][] nctsp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public static long[] nla(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nl(); } return a; } public static long[][] nlt(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nl(); } } return a; } }