package com.company;
import java.io.*;
import static java.lang.Math.*;
import static java.lang.Math.min;
import java.util.*;
import java.util.stream.Stream;
/**
* @author baito
*/
class P implements Comparable
{
int x, y;
P(int a, int b)
{
x = a;
y = b;
}
@Override
public boolean equals(Object o)
{
if (this == o) return true;
if (!(o instanceof P)) return false;
P p = (P) o;
return x == p.x && y == p.y;
}
@Override
public int hashCode()
{
return Objects.hash(x, y);
}
@Override
public int compareTo(P p)
{
return x == p.x ? y - p.y : x - p.x; //xで昇順にソート
//return (x == p.x ? y - p.y : x - p.x) * -1; //xで降順にソート
//return y == p.y ? x - p.x : y - p.y;//yで昇順にソート
//return (y == p.y ? x - p.x : y - p.y)*-1;//yで降順にソート
}
}
@SuppressWarnings("unchecked")
public class Main
{
static StringBuilder sb = new StringBuilder();
static int INF = 1234567890;
static int MINF = -1234567890;
static long LINF = 123456789123456789L;
static long MLINF = -123456789123456789L;
static long MOD = 1000000007;
static int[] y4 = {0, 1, 0, -1};
static int[] x4 = {1, 0, -1, 0};
static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1};
static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1};
static long[] Fa;//factorial
static boolean[] isPrime;
static int[] primes;
static char[][] map;
static long maxRes = MLINF;
static long minRes = LINF;
static int N;
static int a, b;
static int[] A, B;
public static void main(String[] args)
{
//longを忘れるなオーバーフローするぞ
N = ni();
a = ni();
A = nia(a);
b = ni();
B = nia(b);
long startTime = System.currentTimeMillis();
revSort(A);
Arrays.sort(B);
int[] fa = new int[N];
int[] fb = new int[N];
for (int i = 0; i < N; ++i)
{
fa[i] = A[i % a];
fb[i] = B[i % b];
}
PrimalDual pri = new PrimalDual(2 * N + 2);
int s = 2 * N;
int t = 2 * N + 1;
for (int i = 0; i < N; i++)
{
pri.addEdge(s, i, 1, 0);
pri.addEdge(N + i, t, 1, 0);
}
for (int ai = 0; ai < N; ai++)
{
for (int bi = 0; bi < N; bi++)
{
//al ~ ar試合目の時使える
int al = ai / a * a + 1;
int ar = al + a;
int bl = bi / b * b + 1;
int br = bl + b;
int[] imosu = new int[130];
imosu[al] += 1;
imosu[ar] -= 1;
imosu[bl] += 1;
imosu[br] -= 1;
for (int i = 0; i < imosu.length - 1; i++)
{
imosu[i + 1] += imosu[i];
}
//戦わせることの出来る組み合わせなら辺を追加する
if (arrayCount(imosu, 2) > 0) pri.addEdge(ai, N + bi, 1, fa[ai] > fb[bi] ? 0 : 1);
}
}
System.out.println(N - pri.solve(s, t, N));
long endTime = System.currentTimeMillis();
System.err.println(endTime - startTime);
}
static class PrimalDual//最小費用流
{
static ArrayList[] edges;
PrimalDual(int n)
{
edges = Stream.generate(ArrayList::new).limit(n).toArray(ArrayList[]::new);
}
public static void addEdge(int f, int t, long ca, long co)
{
edges[f].add(new Edge(t, ca, co, edges[t].size()));
edges[t].add(new Edge(f, 0, -co, edges[f].size() - 1));
}
static class Dist implements Comparable
{
int v;
long dist;
Dist(long a, int b)
{
dist = a;
v = b;
}
@Override
public boolean equals(Object o)
{
if (this == o) return true;
if (!(o instanceof Dist)) return false;
Dist d = (Dist) o;
return dist == d.dist && v == d.v;
}
@Override
public int hashCode()
{
return Objects.hash(dist, v);
}
@Override
public int compareTo(Dist d)
{
return dist > d.dist ? 1 : -1; //xで昇順にソート
//return (dist == d.dist ? v - d.v : dist - d.dist) * -1; //xで降順にソート
//return v == d.v ? dist - d.dist : v - d.v;//yで昇順にソート
//return (v == d.v ? dist - d.dist : v - d.v)*-1;//yで降順にソート
}
}
//最小の費用流
static long solve(int s, int t, long f)
{
int V = edges.length;
int[] prevv = new int[V];
int[] preve = new int[V];
long[] dist = new long[V];
long[] h = new long[V];
long res = 0;
while (f > 0)
{
Arrays.fill(dist, INF);
dist[s] = 0;
PriorityQueue que = new PriorityQueue<>();
que.add(new Dist(0, s));
while (!que.isEmpty())
{
Dist d = que.poll();
int v = d.v;
if (dist[v] < d.dist) continue;
for (int i = 0; i < edges[v].size(); i++)
{
Edge e = edges[v].get(i);
if (e.cap > 0 && dist[e.to] > d.dist + e.cost + h[v] - h[e.to])
{
dist[e.to] = d.dist + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.add(new Dist(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) return -1;
for (int i = 0; i < V; i++) h[i] += dist[i];
long d = f;
for (int v = t; v != s; v = prevv[v])
{
d = Math.min(d, edges[prevv[v]].get(preve[v]).cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v])
{
Edge e = edges[prevv[v]].get(preve[v]);
e.cap -= d;
edges[v].get(e.rev).cap += d;
}
}
return res;
}
static class Edge
{
int to, rev;
long cap, cost;
Edge(int t, long ca, long co, int r)
{
to = t;
cap = ca;
cost = co;
rev = r;
}
}
}
public static void chMax(long v)
{
maxRes = Math.max(maxRes, v);
}
public static void chMin(long v)
{
minRes = Math.min(minRes, v);
}
public static boolean solve(long v)
{
return true;
}
//条件を満たす最大値、あるいは最小値を求める
static long binarysearch(long ok, long ng)
{
//int ok = 0; //解が存在する
//int ng = N; //解が存在しない
while (Math.abs(ok - ng) > 1)
{
long mid;
if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2;
else mid = ok + (ng - ok) / 2;
if (solve(mid))
{
ok = mid;
}
else
{
ng = mid;
}
}
return ok;
}
public static boolean bitGet(BitSet bit, int keta)
{
return bit.nextSetBit(keta) == keta;
}
public static boolean bitGet(long bit, int keta)
{
return ((bit >> keta) & 1) == 1;
}
public static int restoreHashA(long key)
{
return (int) (key >> 32);
}
public static int restoreHashB(long key)
{
return (int) (key & -1);
}
//正の数のみ
public static long getHashKey(int a, int b)
{
return (long) a << 32 | b;
}
public static long sqrt(long v)
{
long res = (long) Math.sqrt(v);
while (res * res > v) res--;
return res;
}
public static int u0(int a)
{
if (a < 0) return 0;
return a;
}
public static long u0(long a)
{
if (a < 0) return 0;
return a;
}
public static Integer[] toIntegerArray(int[] ar)
{
Integer[] res = new Integer[ar.length];
for (int i = 0; i < ar.length; i++)
{
res[i] = ar[i];
}
return res;
}
//k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001
public static int nextCombSizeK(int comb, int k)
{
int x = comb & -comb; //最下位の1
int y = comb + x; //連続した下の1を繰り上がらせる
return ((comb & ~y) / x >> 1) | y;
}
public static int keta(long num)
{
int res = 0;
while (num > 0)
{
num /= 10;
res++;
}
return res;
}
public static boolean isOutofIndex(int x, int y, char[][] ban)
{
if (x < 0 || y < 0) return true;
if (ban[0].length <= x || ban.length <= y) return true;
return false;
}
public static int arrayCount(int[] a, int v)
{
int res = 0;
for (int i = 0; i < a.length; i++)
{
if (a[i] == v) res++;
}
return res;
}
public static int arrayCount(long[] a, int v)
{
int res = 0;
for (int i = 0; i < a.length; i++)
{
if (a[i] == v) res++;
}
return res;
}
public static int arrayCount(int[][] a, int v)
{
int res = 0;
for (int hi = 0; hi < a.length; hi++)
{
for (int wi = 0; wi < a[0].length; wi++)
{
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static int arrayCount(long[][] a, int v)
{
int res = 0;
for (int hi = 0; hi < a.length; hi++)
{
for (int wi = 0; wi < a[0].length; wi++)
{
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static int arrayCount(char[][] a, char v)
{
int res = 0;
for (int hi = 0; hi < a.length; hi++)
{
for (int wi = 0; wi < a[0].length; wi++)
{
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static void setPrimes()
{
int n = 100001;
isPrime = new boolean[n];
List prs = new ArrayList<>();
Arrays.fill(isPrime, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i * i <= n; i++)
{
if (!isPrime[i]) continue;
prs.add(i);
for (int j = i * 2; j < n; j += i)
{
isPrime[j] = false;
}
}
primes = new int[prs.size()];
for (int i = 0; i < prs.size(); i++)
primes[i] = prs.get(i);
}
public static void revSort(int[] a)
{
Arrays.sort(a);
reverse(a);
}
public static void revSort(long[] a)
{
Arrays.sort(a);
reverse(a);
}
public static int[][] copy(int[][] ar)
{
int[][] nr = new int[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
/**
* 指定した値以上の先頭のインデクスを返す
* 配列要素が0のときは、0が返る。
*
* @returnint : 探索した値以上で、先頭になるインデクス
* 値が無ければ、挿入できる最小のインデックス
*/
public static int lowerBound(final int[] arr, final int value)
{
int low = 0;
int high = arr.length;
int mid;
while (low < high)
{
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] < value)
{
low = mid + 1;
}
else
{
high = mid;
}
}
return low;
}
/**
* 指定した値より大きい先頭のインデクスを返す
* 配列要素が0のときは、0が返る。
*
* @returnint : 探索した値より上で、先頭になるインデクス
* 値が無ければ、挿入できる最小のインデックス
*/
public static int upperBound(final int[] arr, final int value)
{
int low = 0;
int high = arr.length;
int mid;
while (low < high)
{
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] <= value)
{
low = mid + 1;
}
else
{
high = mid;
}
}
return low;
}
/**
* 指定した値以上の先頭のインデクスを返す
* 配列要素が0のときは、0が返る。
*
* @returnint : 探索した値以上で、先頭になるインデクス
* 値がなければ挿入できる最小のインデックス
*/
public static long lowerBound(final long[] arr, final long value)
{
int low = 0;
int high = arr.length;
int mid;
while (low < high)
{
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] < value)
{
low = mid + 1;
}
else
{
high = mid;
}
}
return low;
}
/**
* 指定した値より大きい先頭のインデクスを返す
* 配列要素が0のときは、0が返る。
*
* @returnint : 探索した値より上で、先頭になるインデクス
* 値がなければ挿入できる最小のインデックス
*/
public static long upperBound(final long[] arr, final long value)
{
int low = 0;
int high = arr.length;
int mid;
while (low < high)
{
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] <= value)
{
low = mid + 1;
}
else
{
high = mid;
}
}
return low;
}
//次の順列に書き換える、最大値ならfalseを返す
public static boolean nextPermutation(int A[])
{
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--)
{
if (A[pos] < A[pos + 1]) break;
}
if (pos == -1) return false;
//posより大きい最小の数を二分探索
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1)
{
int mid = (ok + ng) / 2;
if (A[mid] > A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
//次の順列に書き換える、最小値ならfalseを返す
public static boolean prevPermutation(int A[])
{
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--)
{
if (A[pos] > A[pos + 1]) break;
}
if (pos == -1) return false;
//posより小さい最大の数を二分探索
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1)
{
int mid = (ok + ng) / 2;
if (A[mid] < A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
//↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある***
static long ncr(int n, int r)
{
if (n < r) return 0;
else if (r == 0) return 1;
factorial(n);
return Fa[n] / (Fa[n - r] * Fa[r]);
}
static long ncr2(int a, int b)
{
if (b == 0) return 1;
else if (a < b) return 0;
long res = 1;
for (int i = 0; i < b; i++)
{
res *= a - i;
res /= i + 1;
}
return res;
}
static long ncrdp(int n, int r)
{
if (n < r) return 0;
long[][] dp = new long[n + 1][r + 1];
for (int ni = 0; ni < n + 1; ni++)
{
dp[ni][0] = dp[ni][ni] = 1;
for (int ri = 1; ri < ni; ri++)
{
dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri];
}
}
return dp[n][r];
}
static long modNcr(int n, int r)
{
if (n < r) return 0;
long result = Fa[n];
result = result * modInv(Fa[n - r]) % MOD;
result = result * modInv(Fa[r]) % MOD;
return result;
}
public static long modSum(long... lar)
{
long res = 0;
for (long l : lar)
res = (res + l % MOD) % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modDiff(long a, long b)
{
long res = a % MOD - b % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modMul(long... lar)
{
long res = 1;
for (long l : lar)
res = (res * l % MOD) % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modDiv(long a, long b)
{
long x = a % MOD;
long y = b % MOD;
long res = (x * modInv(y)) % MOD;
return res;
}
static long modInv(long n)
{
return modPow(n, MOD - 2);
}
static void factorial(int n)
{
Fa = new long[n + 1];
Fa[0] = Fa[1] = 1;
for (int i = 2; i <= n; i++)
{
Fa[i] = (Fa[i - 1] * i) % MOD;
}
}
static long modPow(long x, long n)
{
long res = 1L;
while (n > 0)
{
if ((n & 1) == 1)
{
res = res * x % MOD;
}
x = x * x % MOD;
n >>= 1;
}
return res;
}
//↑nCrをmod計算するために必要
static int gcd(int n, int r)
{
return r == 0 ? n : gcd(r, n % r);
}
static long gcd(long n, long r)
{
return r == 0 ? n : gcd(r, n % r);
}
static void swap(T[] x, int i, int j)
{
T t = x[i];
x[i] = x[j];
x[j] = t;
}
static void swap(int[] x, int i, int j)
{
int t = x[i];
x[i] = x[j];
x[j] = t;
}
public static void reverse(int[] x)
{
int l = 0;
int r = x.length - 1;
while (l < r)
{
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(long[] x)
{
int l = 0;
int r = x.length - 1;
while (l < r)
{
long temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(char[] x)
{
int l = 0;
int r = x.length - 1;
while (l < r)
{
char temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(int[] x, int s, int e)
{
int l = s;
int r = e;
while (l < r)
{
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
static int length(int a)
{
int cou = 0;
while (a != 0)
{
a /= 10;
cou++;
}
return cou;
}
static int length(long a)
{
int cou = 0;
while (a != 0)
{
a /= 10;
cou++;
}
return cou;
}
static int cou(boolean[] a)
{
int res = 0;
for (boolean b : a)
{
if (b) res++;
}
return res;
}
static int cou(String s, char c)
{
int res = 0;
for (char ci : s.toCharArray())
{
if (ci == c) res++;
}
return res;
}
static int countC2(char[][] a, char c)
{
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == c) co++;
return co;
}
static int countI(int[] a, int key)
{
int co = 0;
for (int i = 0; i < a.length; i++)
if (a[i] == key) co++;
return co;
}
static int countI(int[][] a, int key)
{
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == key) co++;
return co;
}
static void fill(int[][] a, int v)
{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(char[][] a, char c)
{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = c;
}
static void fill(long[][] a, long v)
{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(int[][][] a, int v)
{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
for (int k = 0; k < a[0][0].length; k++)
a[i][j][k] = v;
}
static int max(int... a)
{
int res = Integer.MIN_VALUE;
for (int i : a)
{
res = Math.max(res, i);
}
return res;
}
static long min(long... a)
{
long res = Long.MAX_VALUE;
for (long i : a)
{
res = Math.min(res, i);
}
return res;
}
static int max(int[][] ar)
{
int res = Integer.MIN_VALUE;
for (int i[] : ar)
res = Math.max(res, max(i));
return res;
}
static int min(int... a)
{
int res = Integer.MAX_VALUE;
for (int i : a)
{
res = Math.min(res, i);
}
return res;
}
static int min(int[][] ar)
{
int res = Integer.MAX_VALUE;
for (int i[] : ar)
res = Math.min(res, min(i));
return res;
}
static int sum(int[] a)
{
int cou = 0;
for (int i : a)
cou += i;
return cou;
}
static int abs(int a)
{
return Math.abs(a);
}
//FastScanner
static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer tokenizer = null;
public static String next()
{
if (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e)
{
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
/*public String nextChar(){
return (char)next()[0];
}*/
public static String nextLine()
{
if (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
return reader.readLine();
} catch (IOException e)
{
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public static long nl()
{
return Long.parseLong(next());
}
public static int ni()
{
return Integer.parseInt(next());
}
public static double nd()
{
return Double.parseDouble(next());
}
public static int[] nia(int n)
{
int[] a = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = ni();
}
return a;
}
//1-index
public static int[] niao(int n)
{
int[] a = new int[n + 1];
for (int i = 1; i < n + 1; i++)
{
a[i] = ni();
}
return a;
}
public static int[] niad(int n)
{
int[] a = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = ni() - 1;
}
return a;
}
public static int[][] nit(int h, int w)
{
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++)
{
for (int wi = 0; wi < w; wi++)
{
a[hi][wi] = ni();
}
}
return a;
}
public static int[][] nitd(int h, int w)
{
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++)
{
for (int wi = 0; wi < w; wi++)
{
a[hi][wi] = ni() - 1;
}
}
return a;
}
//複数の配列を受け取る
public static void nia2(int[] a, int[] b, int[] c)
{
for (int i = 0; i < a.length; i++)
{
a[i] = ni();
b[i] = ni();
c[i] = ni();
}
}
//複数の配列を受け取る
public static void nia3(int[] a, int[] b, int[] c)
{
for (int i = 0; i < a.length; i++)
{
a[i] = ni();
b[i] = ni();
c[i] = ni();
}
}
public static char[] nca(int n)
{
char[] a = next().toCharArray();
return a;
}
public static char[][] nct(int h, int w)
{
char[][] a = new char[h][w];
for (int i = 0; i < h; i++)
{
a[i] = next().toCharArray();
}
return a;
}
//スペースが入っている場合
public static char[][] ncts(int h, int w)
{
char[][] a = new char[h][w];
for (int i = 0; i < h; i++)
{
a[i] = nextLine().replace(" ", "").toCharArray();
}
return a;
}
public static char[][] nctp(int h, int w, char c)
{
char[][] a = new char[h + 2][w + 2];
//char c = '*';
int i;
for (i = 0; i < w + 2; i++)
a[0][i] = c;
for (i = 1; i < h + 1; i++)
{
a[i] = (c + next() + c).toCharArray();
}
for (i = 0; i < w + 2; i++)
a[h + 1][i] = c;
return a;
}
//スペースが入ってる時用
public static char[][] nctsp(int h, int w, char c)
{
char[][] a = new char[h + 2][w + 2];
//char c = '*';
int i;
for (i = 0; i < w + 2; i++)
a[0][i] = c;
for (i = 1; i < h + 1; i++)
{
a[i] = (c + nextLine().replace(" ", "") + c).toCharArray();
}
for (i = 0; i < w + 2; i++)
a[h + 1][i] = c;
return a;
}
public static long[] nla(int n)
{
long[] a = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nl();
}
return a;
}
public static long[][] nlt(int h, int w)
{
long[][] a = new long[h][w];
for (int hi = 0; hi < h; hi++)
{
for (int wi = 0; wi < w; wi++)
{
a[hi][wi] = nl();
}
}
return a;
}
}