//================================= // Created on: 2018/09/07 21:33:10 //================================= #include #define show(x) std::cerr << #x << " = " << x << std::endl using ll = long long; using ull = unsigned long long; using ld = long double; constexpr std::size_t PC(const ull v) { ull count = (v & 0x5555555555555555ULL) + ((v >> 1) & 0x5555555555555555ULL); count = (count & 0x3333333333333333ULL) + ((count >> 2) & 0x3333333333333333ULL); count = (count & 0x0f0f0f0f0f0f0f0fULL) + ((count >> 4) & 0x0f0f0f0f0f0f0f0fULL); count = (count & 0x00ff00ff00ff00ffULL) + ((count >> 8) & 0x00ff00ff00ff00ffULL); count = (count & 0x0000ffff0000ffffULL) + ((count >> 16) & 0x0000ffff0000ffffULL); return static_cast((count & 0x00000000ffffffffULL) + ((count >> 32) & 0x00000000ffffffffULL)); } constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); } constexpr ull SZ(const ull v) { return 1ULL << LG(v); } class FastFourierTransformation { private: using T = ll; using F = ld; static constexpr F PI = static_cast(3.141592653589793238462643383279502884); using P = std::pair; static P plus(const P& c1, const P& c2) { return P{c1.first + c2.first, c1.second + c2.second}; } static P minus(const P& c1, const P& c2) { return P{c1.first - c2.first, c1.second - c2.second}; } static P mul(const P& c1, const P& c2) { return P{c1.first * c2.first - c1.second * c2.second, c1.first * c2.second + c1.second * c2.first}; } public: FastFourierTransformation() = delete; static std::vector

fft(std::vector

& a, const bool rev = false) { const std::size_t size = a.size(), height = LG(size); for (std::size_t i = 0; i < size; i++) { std::size_t j = 0; for (std::size_t k = 0; k < height; k++) { j |= (i >> k & 1) << (height - 1 - k); } if (i < j) { swap(a[i], a[j]); } } for (std::size_t i = 1; i < size; i <<= 1) { for (std::size_t j = 0; j < i; j++) { const F theta = 2 * PI / (F)(i << 1) * (F)(rev ? -1 : 1) * (F)j; const P w{std::cos(theta), std::sin(theta)}; for (std::size_t k = 0; k < size; k += (i << 1)) { const P s = a[j + k + 0], t = mul(a[j + k + i], w); a[j + k + 0] = P{s.first + t.first, s.second + t.second}, a[j + k + i] = P{s.first - t.first, s.second - t.second}; } } } if (not rev) { return a; } for (std::size_t i = 0; i < size; i++) { a[i].first /= (F)size, a[i].second /= (F)size; } return a; } static std::vector convolute(const std::vector& a, const std::vector& b) // ans[i] = \sum_{A+B = i} a[A]*b[B] { const std::size_t size = a.size() + b.size() - 1, t = (std::size_t)SZ(size); std::vector

A(t), B(t); for (std::size_t i = 0; i < a.size(); i++) { A[i].first = (F)a[i]; } for (std::size_t i = 0; i < b.size(); i++) { B[i].first = (F)b[i]; } A = fft(A), B = fft(B); for (std::size_t i = 0; i < t; i++) { A[i] = mul(A[i], B[i]); } A = fft(A, true); std::vector ans(size); for (std::size_t i = 0; i < size; i++) { ans[i] = (T)std::round(A[i].first); } return ans; } }; int main() { ll MAX; std::cin >> MAX; std::vector a(3 * MAX + 1, 1); for (ll i = 2; i <= 3 * MAX; i++) { if (not a[i]) { continue; } for (ll j = 2; i * j <= 3 * MAX; j++) { a[i * j] = false; } } a[0] = a[1] = 0; const auto A = a; a.resize(MAX + 1); const auto b = FastFourierTransformation::convolute(a, a); const auto c = FastFourierTransformation::convolute(a, b); ll ans = 0; for (ll i = 0; i <= 3 * MAX; i++) { if (A[i]) { ans += c[i]; } } std::vector B(2 * MAX + 1, 0); for (ll i = 0; i <= MAX; i++) { B[2 * i] = A[i]; } const auto C = FastFourierTransformation::convolute(B, a); for (ll i = 0; i <= 3 * MAX; i++) { if (A[i]) { ans -= 3 * C[i]; } } std::cout << ans / 6 << std::endl; return 0; }