#include "bits/stdc++.h" using namespace std; typedef long long ll; typedef pair pii; typedef pair pll; const int INF = 1e9; const ll LINF = 1e18; template ostream& operator << (ostream& out,const pair& o){ out << "(" << o.first << "," << o.second << ")"; return out; } template ostream& operator << (ostream& out,const vector V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; } template ostream& operator << (ostream& out,const vector > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; } template ostream& operator << (ostream& out,const map mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; } /* 問題文============================================================ ================================================================= 解説============================================================= ================================================================ */ inline ll mod(ll a,ll m){ return (a%m + m)%m;} /* 拡張ユークリッドの互除法 extgcd */ ll extgcd(ll a, ll b, ll& x, ll& y){ ll g = a; x = 1; y = 0; if(b!=0) { g = extgcd(b, a%b, y, x); y -= (a/b)*x;} return g; } /* 中国剰余定理 (Chinese Remainder Theorem) x ≡ b1 (mod. m1) x ≡ b2 (mod. m2) ... x ≡ bk (mod. mk) を満たす x ≡ r (mod. lcm(m1,m2,...,mk)) を求める 答えを x ≡ r (mod. M) として、{r, M} をリターン, 存在しない場合は {0, -1} をリターン */ pll CRT(const vector& b,const vector& m){ ll r = 0, M = 1; for(int i = 0; i < (int)b.size();i++){ ll p,q; ll d = extgcd(M,m[i],p,q); if((b[i]-r)%d != 0) return make_pair(0,-1); ll tmp = (b[i]-r)/d*p%(m[i]/d); r += M*tmp; M *= m[i]/d; } return make_pair(mod(r,M), M); } ll solve(){ vector b(3),m(3); for(int i = 0; i < 3;i++) cin >> b[i] >> m[i]; pll res = CRT(b,m); if(res.second == -1) return -1; if(count(b.begin(),b.end(),0)==0) return res.second; // lcm(m1,m2,m3) else return res.first; } int main(void) { cin.tie(0); ios_base::sync_with_stdio(false); cout << solve() << endl; return 0; }