#include <iostream> #include <string> #include <vector> #include <algorithm> #include <cmath> #include <cstdio> #include <functional> #include <numeric> #include <stack> #include <queue> #include <map> #include <set> #include <utility> #include <sstream> #include <complex> #include <fstream> #include <bitset> #include <time.h> #include <tuple> #include <iomanip> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll> P; typedef vector<ll> V; typedef complex<double> Point; #define PI acos(-1.0) #define EPS 1e-10 const ll INF = 1e16; const ll MOD = 1e9 + 7; #define FOR(i,a,b) for(int i=(a);i<(b);i++) #define rep(i,N) for(int i=0;i<(N);i++) #define ALL(s) (s).begin(),(s).end() #define EQ(a,b) (abs((a)-(b))<EPS) #define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) ) #define fi first #define se second #define N_SIZE (1LL << 20) #define NIL -1 ll sq(ll num) { return num*num; } ll mod_pow(ll x, ll n) { if (n == 0)return 1; if (n == 1)return x%MOD; ll res = sq(mod_pow(x, n / 2)); res %= MOD; if (n % 2 == 1) { res *= x; res %= MOD; } return res; } ll mod_add(ll a, ll b) { return (a + b) % MOD; } ll mod_sub(ll a, ll b) { return (a - b + MOD) % MOD; } ll mod_mul(ll a, ll b) { return a*b % MOD; } ll n,p; ll C[5001][4]; ll dp[2][3*5000+1]; int main(){ cin >> n >> p; rep(i,n){ cin >> C[i][0] >> C[i][1] >> C[i][2]; C[i][3] = 1; } rep(i,2)rep(j,3*5000+1)dp[i][j] = INF; rep(i,4)dp[1][i] = C[0][i]; FOR(i,1,n){ rep(j,p+1){ rep(k,4){ if(j+k <= p)dp[(i+1)%2][j+k] = min(dp[(i+1)%2][j+k],dp[i%2][j]+C[i][k]); } } } printf("%.10lf\n",(double)dp[n%2][p]/(double)n); }