#!/usr/bin/env pypy3

import itertools
import functools


M = 10 ** 9 + 7


def mod_sum(ys, mod=M):
    xs = itertools.chain((0, ), ys)
    return functools.reduce(lambda x, y: (x + y) % mod, xs) % mod


class ModPrime(object):
 
    def __init__(self, max_n=1000100, mod=M):
        # cf. http://hos.ac/slides/20130319_enumeration.pdf
        self.max_n = max_n
        self.mod = mod
        self.invs = [None, 1]
        for i in range(2, self.max_n + 1):
            self.invs.append(mod - mod // i * self.invs[mod % i] % mod)
        self.facts = [1]
        self.fact_invs = [1]
        for i in range(1, self.max_n + 1):
            self.facts.append(self.facts[i - 1] * i % mod)
            self.fact_invs.append(self.fact_invs[i - 1] * self.invs[i] % mod)
    
    def inv(self, n):
        return self.invs[n]
    
    def fact(self, n):
        return self.facts[n]
    
    def fact_inv(self, n):
        return self.fact_invs[n]
    
    def comb(self, n, r):
        if r < 0 or r > n:
            return 0
        return self.fact(n) * self.fact_inv(r) % self.mod * self.fact_inv(n - r) % self.mod
    
    def multi_choose(self, n, r):
        return self.comb(n + r - 1, r)


def solve(n, mod=M):
    mp = ModPrime(mod=mod)
    res = (1 + mod_sum(mp.multi_choose(9, k) for k in range(1, n + 1))) % mod
    return res


def main():
    print(solve(int(input())))

if __name__ == '__main__':
    main()