macro_rules! impl_magma { ($T:ty, $U:ty, | $op_lhs:pat, $op_rhs:pat | $op_ret:expr) => { impl $crate::math::algebra::Magma for $T { type Underlying = $U; fn op($op_lhs: &Self::Underlying, $op_rhs: &Self::Underlying) -> Self::Underlying { $op_ret } } }; } macro_rules! impl_identity { ($T:ty, $id:expr) => { impl $crate::math::algebra::Identity for $T { fn identity() -> Self::Underlying { $id } } }; } macro_rules! impl_invertible { ($T:ty, | $inv_x:pat | $inv_b:expr) => { impl $crate::math::algebra::Invertible for $T { fn invert($inv_x: &Self::Underlying) -> Self::Underlying { $inv_b } } }; } macro_rules! impl_associative { ($T:ty) => { impl $crate::math::algebra::Associative for $T {} }; } macro_rules! impl_commutative { ($T:ty) => { impl $crate::math::algebra::Commutative for $T {} }; } fn solve(_reader: R, _writer: &mut W) { let mut _scanner = Scanner::new(_reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.next::<$T>().unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($($T:ty),+; $n:expr $(; $m:expr)*) => {{ let mut vec = Vec::with_capacity($n); for _ in 0..$n { vec.push(scan!($($T),+ $(; $m)*)); } vec }}; } #[allow(unused_macros)] macro_rules! scan_iter { ($T:ty; $n:expr) => { _scanner.take::<$T>($n).map(|x| x.unwrap()) }; } #[allow(unused_macros)] macro_rules! print { ($fmt:expr) => { write!(_writer, $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { write!(_writer, $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! println { ($fmt:expr) => { writeln!(_writer, $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { writeln!(_writer, $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! eprint { ($fmt:expr) => { #[cfg(debug_assertions)] write!(::std::io::stderr(), $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { #[cfg(debug_assertions)] write!(::std::io::stderr(), $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! eprintln { ($fmt:expr) => { #[cfg(debug_assertions)] writeln!(::std::io::stderr(), $fmt).unwrap() }; ($fmt:expr, $($arg:tt)*) => { #[cfg(debug_assertions)] writeln!(::std::io::stderr(), $fmt, $($arg)*).unwrap() }; } #[allow(unused_macros)] macro_rules! dump { ($($x:expr),+) => { eprint!("[{}:{}] ", file!(), line!()); eprintln!(concat!($(stringify!($x), " = {:?}; "),+), $($x),+); }; } use data_structures::fenwick_tree::FenwickTree; use math::algebra::AdditiveGroup; let (n, m) = scan!(usize, usize); let mut ab = vec![]; for _ in 0..n { let (a, b) = scan!(usize, usize); ab.push(if a < b { (a, b) } else { (b, a) }); } ab.sort(); let mut seq = FenwickTree::>::new(m + 1); let mut ans = 0; for (a, b) in ab { ans += (seq.concat(0..a + 1) - seq.concat(0..b + 1)).abs(); seq.append(a, &1); seq.append(b + 1, &-1); } println!("{}", ans); } const CUSTOM_STACK_SIZE_MEBIBYTES: Option = None; fn main() { if let Some(stack_size_mebibytes) = CUSTOM_STACK_SIZE_MEBIBYTES { let builder = thread::Builder::new() .name("exec_solver".to_string()) .stack_size(stack_size_mebibytes * 1024 * 1024); builder.spawn(exec_solver).unwrap().join().unwrap(); } else { exec_solver(); } } fn exec_solver() { let stdin = stdin(); let stdout = stdout(); #[cfg(debug_assertions)] let mut writer = stdout.lock(); #[cfg(not(debug_assertions))] let mut writer = ::std::io::BufWriter::new(stdout.lock()); solve(stdin.lock(), &mut writer); writer.flush().unwrap(); } use io::Scanner; use std::io::{stdin, stdout, BufRead, Write}; use std::thread; pub mod math { pub mod algebra { pub use self::abelian_group::*; pub use self::additive_group::*; pub use self::associative::*; pub use self::commutative::*; pub use self::identity::*; pub use self::invertible::*; pub use self::magma::*; pub use self::monoid::*; mod magma { pub trait Magma { type Underlying: Clone; fn op(lhs: &Self::Underlying, rhs: &Self::Underlying) -> Self::Underlying; fn op_assign(lhs: &mut Self::Underlying, rhs: &Self::Underlying) { *lhs = Self::op(lhs, rhs); } } } mod identity { use math::algebra::Magma; pub trait Identity: Magma { fn identity() -> Self::Underlying; fn prop(a: &Self::Underlying) -> bool where Self::Underlying: PartialEq, { Self::op(&Self::identity(), a) == *a && Self::op(a, &Self::identity()) == *a } } } mod invertible { use math::algebra::{Identity, Magma}; pub trait Invertible: Magma + Identity { fn invert(&Self::Underlying) -> Self::Underlying; fn op_inverse(lhs: &Self::Underlying, rhs: &Self::Underlying) -> Self::Underlying { Self::op(lhs, &Self::invert(rhs)) } fn op_inverse_assign(lhs: &mut Self::Underlying, rhs: &Self::Underlying) { *lhs = Self::op_inverse(lhs, rhs); } fn prop(a: &Self::Underlying) -> bool where Self::Underlying: Eq, { let identity = Self::identity(); Self::op(a, &Self::invert(a)) == identity && Self::op(&Self::invert(a), a) == identity } } } mod associative { use math::algebra::Magma; pub trait Associative: Magma { fn prop(a: &Self::Underlying, b: &Self::Underlying, c: &Self::Underlying) -> bool where Self::Underlying: Eq, { Self::op(&Self::op(a, b), c) == Self::op(a, &Self::op(b, c)) } } } mod commutative { use math::algebra::Magma; pub trait Commutative: Magma { fn prop(a: &Self::Underlying, b: &Self::Underlying) -> bool where Self::Underlying: Eq, { Self::op(a, b) == Self::op(b, a) } } } #[macro_use] mod monoid { use math::algebra::{Associative, Identity, Magma}; pub trait Monoid: Magma + Associative + Identity {} impl Monoid for T {} macro_rules! impl_monoid { ($t:ty, $u:ty, | $op_l:pat, $op_r:pat | $op_b:expr, $id:expr) => { impl_magma! { $t, $u, | $op_l, $op_r | $op_b } impl_associative! { $t } impl_identity! { $t, $id } }; } } #[macro_use] mod abelian_group { use math::algebra::{Associative, Commutative, Identity, Invertible, Magma}; pub trait AbelianGroup: Magma + Associative + Commutative + Identity + Invertible {} impl AbelianGroup for T {} macro_rules! impl_abelian_group { ($t:ty, $u:ty, | $op_l:pat, $op_r:pat | $op_b:expr, $id:expr, | $inv_x:pat | $inv_b:expr) => { impl_magma! { $t, $u, | $op_l, $op_r | $op_b } impl_associative! { $t } impl_commutative! { $t } impl_identity! { $t, $id } impl_invertible! { $t, | $inv_x | $inv_b } }; } } mod additive_group { #[allow(unused_imports)] use math::algebra::AbelianGroup; use std::marker::PhantomData; pub struct AdditiveGroup { _marker: PhantomData T>, } macro_rules! impl_additive_group { ($($t:ty)+) => {$( impl_abelian_group! { AdditiveGroup<$t>, $t, |&lhs, &rhs| lhs + rhs, 0, |&x| -x } )+}; } impl_additive_group! { i32 i64 isize } } } } pub mod misc { pub use self::byte_char::*; pub use self::byte_string::*; mod byte_char { use std::fmt::{self, Debug, Display, Formatter}; #[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b\'{}\'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}", self.0 as char) } } } mod byte_string { use misc::ByteChar; use std::fmt::{self, Debug, Display, Formatter}; #[derive(Clone, PartialOrd, Ord, PartialEq, Eq, Hash)] pub struct ByteString(pub Vec); impl Debug for ByteString { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b\"")?; for &c in &self.0 { write!(f, "{}", c.0 as char)?; } write!(f, "b\"") } } impl Display for ByteString { fn fmt(&self, f: &mut Formatter) -> fmt::Result { for &c in &self.0 { write!(f, "{}", c)?; } Ok(()) } } } } pub mod data_structures { pub mod fenwick_tree { pub use self::fenwick_tree::FenwickTree; pub mod fenwick_tree { use math::algebra::{AbelianGroup, Commutative, Monoid}; use std::iter; use std::iter::FromIterator; use std::ops::{Range, RangeTo}; pub struct FenwickTree { vec: Vec, } impl Clone for FenwickTree { fn clone(&self) -> Self { FenwickTree { vec: self.vec.clone() } } } impl FenwickTree { pub fn new(len: usize) -> Self { FenwickTree { vec: vec![M::identity(); len + 1], } } pub fn len(&self) -> usize { self.vec.len() - 1 } pub fn append(&mut self, index: usize, x: &M::Underlying) { assert!(index < self.len()); let mut i = index as isize + 1; while i <= self.len() as isize { M::op_assign(&mut self.vec[i as usize], x); i += lsb(i); } } pub fn prefix_concat(&self, index: RangeTo) -> M::Underlying { assert!(index.end <= self.len()); let mut acc = M::identity(); let mut r = index.end as isize; while r > 0 { M::op_assign(&mut acc, &self.vec[r as usize]); r -= lsb(r); } acc } } impl FenwickTree { pub fn get(&self, index: usize) -> G::Underlying { debug_assert!(index < self.len()); self.concat(index..index + 1) } pub fn set(&mut self, index: usize, value: &G::Underlying) { debug_assert!(index < self.len()); let diff = G::op_inverse(value, &self.get(index)); self.append(index, &diff); } pub fn concat(&self, index: Range) -> G::Underlying { assert!(index.start <= index.end); assert!(index.end <= self.len()); let mut acc = G::identity(); let mut l = index.start as isize; let mut r = index.end as isize; while l < r { G::op_assign(&mut acc, &self.vec[r as usize]); r -= lsb(r); } while r < l { G::op_inverse_assign(&mut acc, &self.vec[l as usize]); l -= lsb(l); } acc } } impl FromIterator for FenwickTree { fn from_iter>(iter: I) -> Self { let mut vec = iter::once(M::identity()).chain(iter).collect::>(); vec.shrink_to_fit(); for i in 1..(vec.len() - 1) as isize { let j = (i + lsb(i)) as usize; if j < vec.len() { vec[j] = M::op(&vec[j], &vec[i as usize]); } } FenwickTree { vec: vec } } } fn lsb(x: isize) -> isize { x & !x + 1 } } } } pub mod io { pub use self::from_bytes::FromBytes; pub use self::scanner::Scanner; mod from_bytes { use misc::{ByteChar, ByteString}; use std::str::{self, FromStr}; #[derive(Debug)] pub struct FromBytesError; pub trait FromBytes: Sized { type Err; fn from_bytes(bytes: &[u8]) -> Result; } impl FromBytes for ByteChar { type Err = FromBytesError; fn from_bytes(bytes: &[u8]) -> Result { if bytes.len() == 1 { Ok(ByteChar(*unsafe { bytes.get_unchecked(0) })) } else { Err(FromBytesError) } } } impl FromBytes for ByteString { type Err = FromBytesError; fn from_bytes(bytes: &[u8]) -> Result { Ok(ByteString(bytes.iter().cloned().map(ByteChar).collect())) } } impl FromBytes for T { type Err = T::Err; fn from_bytes(bytes: &[u8]) -> Result { let s = if cfg!(debug_assertions) { str::from_utf8(bytes).unwrap() } else { unsafe { str::from_utf8_unchecked(bytes) } }; T::from_str(s) } } } mod scanner { use io::FromBytes; use std::io::BufRead; use std::marker::PhantomData; pub struct Scanner { reader: R, buffer: Vec, position: usize, } impl Scanner { pub fn new(reader: R) -> Self { Scanner { reader: reader, buffer: vec![], position: 0, } } pub fn next(&mut self) -> Result { FromBytes::from_bytes(self.next_bytes().unwrap_or(&[])) } pub fn take(&mut self, n: usize) -> Take { Take { scanner: self, n: n, _marker: PhantomData, } } pub fn next_bytes(&mut self) -> Option<&[u8]> { if self.buffer.is_empty() { self.read_line(); } loop { match self.buffer.get(self.position) { Some(&b' ') => self.position += 1, Some(&b'\n') => self.read_line(), Some(_) => break, None => return None, } } let start = self.position; loop { match self.buffer.get(self.position) { Some(&b' ') | Some(&b'\n') | None => break, Some(_) => self.position += 1, } } Some(&self.buffer[start..self.position]) } fn read_line(&mut self) { self.position = 0; self.buffer.clear(); self.reader.read_until(b'\n', &mut self.buffer).unwrap(); } } pub struct Take<'a, R: 'a, T> { scanner: &'a mut Scanner, n: usize, _marker: PhantomData T>, } impl<'a, R: BufRead, T: FromBytes> Iterator for Take<'a, R, T> { type Item = Result; fn next(&mut self) -> Option { if self.n > 0 { self.n -= 1; Some(self.scanner.next()) } else { None } } fn size_hint(&self) -> (usize, Option) { (self.n, Some(self.n)) } } impl<'a, R: BufRead, T: FromBytes> ExactSizeIterator for Take<'a, R, T> {} } }