import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskX solver = new TaskX(); solver.solve(1, in, out); out.close(); } static int INF = 1 << 30; static long LINF = 1L << 55; static int MOD = 1000000007; static int[] mh4 = { 0, -1, 1, 0 }; static int[] mw4 = { -1, 0, 0, 1 }; static int[] mh8 = { -1, -1, -1, 0, 0, 1, 1, 1 }; static int[] mw8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static class TaskX { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); out.println(comb(n+9, n)); } } /** * 二項係数 * 前提 n < modP * nCr = n!/(r!*(n-r)!)である。この時分子分母にMODが来る場合は以下のように使用する * */ public static long comb(int n, int r) { if (r < 0 || r > n) return 0L; return fact[n] % MOD * factInv[r] % MOD * factInv[n - r] % MOD; } /** * 階乗数の逆元 * * */ public static int MAXN = 1000010; static long[] fact = factorialArray(MAXN, MOD); static long[] factInv = factorialInverseArray(MAXN, MOD, inverseArray(MAXN, MOD)); // 階乗の mod P テーブル public static long[] factorialArray(int maxN, long mod) { long[] fact = new long[maxN + 1]; fact[0] = 1 % mod; for (int i = 1; i <= maxN; i++) { fact[i] = fact[i - 1] * i % mod; } return fact; } // 数 i に対する mod P での逆元テーブル public static long[] inverseArray(int maxN, long modP) { long[] inv = new long[maxN + 1]; inv[1] = 1; for (int i = 2; i <= maxN; i++) { inv[i] = modP - (modP / i) * inv[(int) (modP % i)] % modP; } return inv; } // 階乗の逆元テーブル public static long[] factorialInverseArray(int maxN, long modP, long[] inverseArray) { long[] factInv = new long[maxN + 1]; factInv[0] = 1; for (int i = 1; i <= maxN; i++) { factInv[i] = factInv[i - 1] * inverseArray[i] % modP; } return factInv; } static class InputReader { BufferedReader in; StringTokenizer tok; public String nextString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine(), " "); } catch (IOException e) { throw new InputMismatchException(); } } return tok.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } public int[] nextIntArrayDec(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt() - 1; } return res; } public int[] nextIntArray1Index(int n) { int[] res = new int[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextInt(); } return res; } public long[] nextLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } public long[] nextLongArrayDec(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong() - 1; } return res; } public long[] nextLongArray1Index(int n) { long[] res = new long[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextLong(); } return res; } public double[] nextDoubleArray(int n) { double[] res = new double[n]; for (int i = 0; i < n; i++) { res[i] = nextDouble(); } return res; } public InputReader(InputStream inputStream) { in = new BufferedReader(new InputStreamReader(inputStream)); tok = new StringTokenizer(""); } } }