import java.io.*; import static java.lang.Math.*; import static java.lang.Math.min; import java.math.BigDecimal; import java.util.*; import static java.util.Arrays.*; import static java.util.Collections.*; import java.util.stream.*; /** * @author baito */ @SuppressWarnings("unchecked") public class Main { static boolean DEBUG = true; static StringBuilder sb = new StringBuilder(); static int INF = (int) 1e9 + 100; static int MINF = (int) -1e9 - 100; static long LINF = (long) 1e18 + 100; static long MLINF = (long) -1e18 - 100; static int MOD = (int) 1e9 + 7; static double EPS = 1e-10; static int[] y4 = {-1, 1, 0, 0}; static int[] x4 = {0, 0, -1, 1}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static boolean[] isPrime; static ArrayList primes; static char[][] S; static long maxRes = Long.MIN_VALUE; static long minRes = Long.MAX_VALUE; static long[] fac, finv, inv; static int N; static long[] D; public static void solve() throws Exception { //longを忘れるなオーバーフローするぞ N = ni(); long A = ni(); long B = ni(); long W = ni(); D = nla(N); //i日目に食べた時の最小 long[] dp = new long[N + 1]; // ConvexHullTrick c = new ConvexHullTrick(N + 100, true, false, true); // for (int i = 1; i < N + 1; i++) { // dp[i] = c.min(i) + A - A * i + D[i - 1] + B * i * (i - 1) / 2; // c.add(-B * i, dp[i] + A * i + B * i * (i + 1) / 2); // } ConvexHullTrick c = new ConvexHullTrick(N); c.add(0, 0); for (int i = 1; i < N + 1; i++) { long I = i; dp[i] = c.query(I) + A - A * I + D[i - 1] + B * I * (I - 1) / 2; c.add(-B * I, dp[i] + A * I + B * I * (I + 1) / 2); } for (int i = 0; i < N + 1; i++) { long I = i; chMin(W + dp[i] - (N - I) * A + B * (N - I) * (N - I + 1) / 2); } System.out.println(minRes); } private static class ConvexHullTrick { LinkedList q; // add における a が単調非増加、query における x が単調非減少である場合 // add O(n), query O(n + q) ConvexHullTrick(int n) { q = new LinkedList<>(); } // ax+b を追加。a は単調非増加とする private void add(long a, long b) { Pair next = new Pair(a, b); while (q.size() >= 2) { Pair curr = q.get(q.size() - 1); Pair prev = q.get(q.size() - 2); if (check(prev, curr, next)) { break; } q.removeLast(); } q.add(next); } // f(x)の最小値。x は単調非減少とする private long query(long x) { long fx0 = fx(q.get(0), x); while (q.size() > 1) { long fx1 = fx(q.get(1), x); if (fx0 < fx1) { return fx0; } q.removeFirst(); fx0 = fx1; } return fx0; } // i 番目の直線を使った時の f(x) の値 private long fx(Pair i, long x) { return i.a * x + i.b; } // curr の直線が必要な場合 true private boolean check(Pair prev, Pair curr, Pair next) { return (next.b - curr.b) * (curr.a - prev.a) < (curr.b - prev.b) * (next.a - curr.a); } private static class Pair { long a; long b; Pair(long a, long b) { this.a = a; this.b = b; } } } // static class ConvexHullTrick { // boolean minQuery, angInc, xinc, redBlue; // long[][] line; // int tail; // // ConvexHullTrick(int maxLine, boolean minQuery, boolean angInc, boolean xinc) { // line = new long[maxLine][2]; // this.minQuery = minQuery; // this.angInc = angInc; // this.xinc = xinc; // redBlue = minQuery ^ angInc; // tail = 1; // } // // //ax + b // void add(long a, long b) { // line[tail][0] = a; // line[tail][1] = b; // tail++; // while (tail >= 3 && bad(line[tail - 3], line[tail - 2], line[tail - 1])) { // line[tail - 2][0] = line[tail - 1][0]; // line[tail - 2][1] = line[tail - 1][1]; // tail--; // } // } // // boolean bad(long[] l1, long[] l2, long[] l3) { // //最小クエリ 傾き減少 // if (redBlue) { // return (l3[1] - l2[1]) * (l2[0] - l1[0]) >= (l2[1] - l1[1]) * (l3[0] - l2[0]); // } else { // return (l3[1] - l2[1]) * (l2[0] - l1[0]) <= (l2[1] - l1[1]) * (l3[0] - l2[0]); // } // } // // long f(int lidx, long x) { // return line[lidx][0] * x + line[lidx][1]; // } // // int head = 0; // // //xが単調とは限らない // long min(long x) { // if (xinc) { // while (line.length - head >= 2 && f(head, x) >= f(head + 1, x)) { // head++; // } // return f(head, x); // } else { // int min = -1; // int max = tail - 1; // while (max - min > 1) { // int med = (max + min) / 2; // if (f(med, x) >= f(med + 1, x)) { // min = med; // } else { // max = med; // } // } // return f(max, x); // } // } // // // long max(long x) { // if (xinc) { // while (line.length - head >= 2 && f(head, x) <= f(head + 1, x)) { // head++; // } // return f(head, x); // } else { // int min = -1; // int max = tail - 1; // while (max - min > 1) { // int med = (max + min) / 2; // if (f(med, x) <= f(med + 1, x)) { // min = med; // } else { // max = med; // } // } // return f(max, x); // } // } // } public static boolean calc(long va) { //貪欲にギリギリセーフを選んでいく。 int v = (int) va; return true; } //条件を満たす最大値、あるいは最小値を求める static int mgr(long ok, long ng) { //int ok = 0; //解が存在する //int ng = N; //解が存在しない while (Math.abs(ok - ng) > 1) { long mid; if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2; else mid = ok + (ng - ok) / 2; if (calc(mid)) { ok = mid; } else { ng = mid; } } if (calc(ok)) return (int) ok; else return -1; } static void initStreamArray(ArrayList[] a, int n) { a = Stream.generate(ArrayList::new).limit(n).toArray(ArrayList[]::new); } //消す候補 static ArrayList divisors(int n) { ArrayList res = new ArrayList<>(); for (int i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { res.add(i); if (i != n / i) res.add(n / i); } } return res; } static ArrayList divisors(long n) { ArrayList res = new ArrayList<>(); for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { res.add(i); if (i != n / i) res.add(n / i); } } return res; } static ArrayList factorization(int n) { if (primes == null) setPrimes(); ArrayList fact = new ArrayList<>(); for (int p : primes) { if (n % p == 0) fact.add(p); while (n % p == 0) n /= p; if (n == 1) break; } if (n != 1) fact.add(n); return fact; } boolean equal(double a, double b) { return a == 0 ? abs(b) < EPS : abs((a - b) / a) < EPS; } public static void chMax(long v) { maxRes = Math.max(maxRes, v); } public static void chMin(long v) { minRes = Math.min(minRes, v); } //便利系 public static long[] rui(int[] a) { long[] res = new long[a.length + 1]; for (int i = 0; i < a.length; i++) { res[i + 1] = a[i]; } for (int i = 0; i < a.length; i++) { res[i + 1] += res[i]; } return res; } //p[i].nowx := i番目に小さいvの値 p[i].nowy := その個数 //0個の物は除く public static P[] mato(int[] a) { CouMap map = new CouMap(a); P[] res = new P[map.size()]; int i = 0; for (Map.Entry m : map.map.entrySet()) { res[i++] = new P((int) (long) m.getKey(), (int) (long) m.getValue()); } sort(res); return res; } public static int[] imosu(int[] f, int[] t, int n) { int[] imosu = new int[n + 1]; for (int i = 0; i < f.length; i++) { imosu[f[i]]++; imosu[t[i] + 1]--; } for (int i = 0; i < n; i++) { imosu[i + 1] += imosu[i]; } return imosu; } static int[] inverse(int[] a) { int[] res = new int[a.length]; for (int i = 0; i < a.length; i++) res[a[i]] = i; return res; } public static String notE(double v) { return BigDecimal.valueOf(v).toPlainString(); } public static void print(ArrayList a) { for (T t : a) { System.out.println(t); } } public static void print(int[] a) { for (int i = 0; i < a.length; i++) System.out.println(a[i]); } public static void print(long[] a) { for (int i = 0; i < a.length; i++) System.out.println(a[i]); } //bit関連 public static boolean bget(BitSet bit, int keta) { return bit.nextSetBit(keta) == keta; } public static boolean bget(long bit, int keta) { return ((bit >> keta) & 1) == 1; } public static int bget3(long bit, int keta) { bit /= (long) pow(3, keta); return (int) (bit % 3); } public static int getHashA(long key) { return (int) (key >> 32); } public static int getHashB(long key) { return (int) (key & -1); } //正の数のみ public static long getHashKey(int a, int b) { return (long) a << 32 | b; } //数学関係-------------------------------- //a/bを返す public static long ceil(long a, long b) { return (a % b == 0) ? a / b : a / b + 1; } public static double sqrt(double v) { return Math.sqrt(v); } public static long sqrt(long v) { long res = (long) Math.sqrt(v); while (res * res > v) res--; return res; } static double[][] PER_DP; static double ncrPer(int n, int r) { if (n < r) return 0; if (PER_DP == null) { PER_DP = new double[5001][5001]; PER_DP[0][0] = 1; for (int ni = 0; ni < PER_DP.length - 1; ni++) { for (int ri = 0; ri < ni + 1; ri++) { PER_DP[ni + 1][ri] += PER_DP[ni][ri] / 2; PER_DP[ni + 1][ri + 1] += PER_DP[ni][ri] / 2; } } } return PER_DP[n][r]; } //mod関連 public static int mod(long a, int m) { return (int) ((a % m + m) % m); } static void setMod() { fac = new long[(int) 1e6 + 1000]; finv = new long[(int) 1e6 + 1000]; inv = new long[(int) 1e6 + 1000]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < 1e6 + 1000; i++) { fac[i] = mMul(fac[i - 1], i); inv[i] = MOD - mMul(inv[MOD % i], (MOD / i)); finv[i] = mMul(finv[i - 1], inv[i]); } } static int mNcr(int n, int r) { if (n < 0 || r < 0 || n < r) return 0; int result = mMul(fac[n], finv[n - r]); result = mMul(result, finv[r]); return result; } public static int mSum(long a, long b) { return (int) (((a % MOD + b % MOD) % MOD + MOD) % MOD); } public static int mDiff(long a, long b) { return mSum(a, -b); } public static int mMul(long a, long b) { return (int) (((a % MOD * b % MOD) % MOD + MOD) % MOD); } public static int mDiv(long a, long b) { return mMul(a, mInv(b)); } public static long mSums(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; return (res + MOD) % MOD; } public static long mDiffs(long... lar) { long res = lar[0] % MOD; for (int i = 1; i < lar.length; i++) { res = (res - lar[i] % MOD) % MOD; } return (res + MOD) % MOD; } public static long mMuls(long... lar) { long res = 1; for (long l : lar) res = (res * (l % MOD)) % MOD; return (res + MOD) % MOD; } public static long mDivs(long... lar) { long res = lar[0] % MOD; for (int i = 1; i < lar.length; i++) { res = mMul(res, mInv(lar[i])); } return (res + MOD) % MOD; } static long mInv(long n) { return mPow(n, MOD - 2); } static int mPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return (int) ((res + MOD) % MOD); } //↑nCrをmod計算するために必要 static long lcm(long n, long r) { return n / gcd(n, r) * r; } static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } public static int u0(int a) { if (a < 0) return 0; return a; } public static long u0(long a) { if (a < 0) return 0; return a; } public static double u0(double a) { if (a < 0) return 0; return a; } public static boolean[][] tbt(char[][] s, char c) { boolean[][] res = new boolean[s.length][s[0].length]; for (int hi = 0; hi < s.length; hi++) for (int wi = 0; wi < s[0].length; wi++) if (s[hi][wi] == c) res[hi][wi] = true; return res; } public static int[] tia(int a) { int[] res = new int[keta(a)]; for (int i = res.length - 1; i >= 0; i--) { res[i] = a % 10; a /= 10; } return res; } public static int[][] tit(char[][] a) { int[][] res = new int[a.length][a[0].length]; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { res[hi][wi] = a[hi][wi] - '0'; } } return res; } public static Integer[] toIntegerArray(int[] ar) { Integer[] res = new Integer[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = ar[i]; } return res; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static long bitNextComb(long comb) { long x = comb & -comb; //最下位の1 long y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static int ketaSum(long num) { int res = 0; while (num > 0) { res += num % 10; num /= 10; } return res; } public static boolean isOutofIndex(int x, int y, int w, int h) { if (x < 0 || y < 0) return true; if (w <= x || h <= y) return true; return false; } public static boolean isOutofIndex(int x, int y, char[][] ban) { if (x < 0 || y < 0) return true; if (ban[0].length <= x || ban.length <= y) return true; return false; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new ArrayList<>(); for (int i = 2; i < n; i++) { if (isPrime[i]) primes.add(i); } } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static P[] clone(P[] ar) { P[] res = new P[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = new P(ar[i].x, ar[i].y); } return res; } public static int[][] clone(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) nr[i] = ar[i].clone(); return nr; } public static long[][] clone(long[][] ar) { long[][] nr = new long[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) nr[i] = ar[i].clone(); return nr; } public static double[][] clone(double[][] ar) { double[][] nr = new double[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) nr[i] = ar[i].clone(); return nr; } public static boolean[][] clone(boolean[][] ar) { boolean[][] nr = new boolean[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) nr[i] = ar[i].clone(); return nr; } public static char[][] clone(char[][] ar) { char[][] nr = new char[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) nr[i] = ar[i].clone(); return nr; } public static int[][][] clone(int[][][] ar) { int[][][] nr = new int[ar.length][ar[0].length][ar[0][0].length]; for (int i = 0; i < ar.length; i++) nr[i] = clone(ar[i]); return nr; } public static long[][][] clone(long[][][] ar) { long[][][] nr = new long[ar.length][ar[0].length][ar[0][0].length]; for (int i = 0; i < ar.length; i++) nr[i] = clone(ar[i]); return nr; } public static double[][][] clone(double[][][] ar) { double[][][] nr = new double[ar.length][ar[0].length][ar[0][0].length]; for (int i = 0; i < ar.length; i++) nr[i] = clone(ar[i]); return nr; } public static boolean[][][] clone(boolean[][][] ar) { boolean[][][] nr = new boolean[ar.length][ar[0].length][ar[0][0].length]; for (int i = 0; i < ar.length; i++) nr[i] = clone(ar[i]); return nr; } public static char[][][] clone(char[][][] ar) { char[][][] nr = new char[ar.length][ar[0].length][ar[0][0].length]; for (int i = 0; i < ar.length; i++) nr[i] = clone(ar[i]); return nr; } /** *

指定した値以上の先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final List lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } //v未満で最大のiを返す。ただしv以上を満たすiがあるなら最小のiを返す public static int rlowerBound(final List lis, final T value) { int ind = lowerBound(lis, value); if (ind == lis.size() || !lis.get(ind).equals(value)) ind--; return ind; } /** *

指定した値より大きい先頭のインデクスを返す

*

配列要素が0のときは、0が返る。

* * @returnint : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final List lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } public static int rlowerBound(final int[] arr, final int value) { int ind = lowerBound(arr, value); if (ind == arr.length || arr[ind] != value) ind--; return ind; } public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } public static int lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } public static int rlowerBound(final long[] arr, final long value) { int ind = lowerBound(arr, value); if (ind == arr.length || arr[ind] != value) ind--; return ind; } public static int upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } static void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(char[] x, int i, int j) { char t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static String reverse(String a) { StringBuilder sb = new StringBuilder(); sb.append(a); return sb.reverse().toString(); } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(char[] x) { int l = 0; int r = x.length - 1; while (l < r) { char temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(boolean[][] a) { int res = 0; for (boolean[] b : a) { res += cou(b); } return res; } static int cou(String s, char c) { int res = 0; for (int i = 0; i < s.length(); i++) { if (s.charAt(i) == c) res++; } return res; } static int cou(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int cou(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int cou(long[] a, long key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int cou(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) co += (cou(a[i], key)); return co; } static int[] couArray(int[] a) { int[] res = new int[maxs(a) + 1]; for (int i : a) { res[i]++; } return res; } static void fill(int[] a, int v) { Arrays.fill(a, v); } static void fill(long[] a, long v) { Arrays.fill(a, v); } static void fill(boolean[] a, boolean v) { Arrays.fill(a, v); } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) Arrays.fill(a[i], v); } static void fill(char[][] a, char c) { for (int i = 0; i < a.length; i++) Arrays.fill(a[i], c); } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) Arrays.fill(a[i], v); } static void fill(double[][] a, double v) { for (int i = 0; i < a.length; i++) Arrays.fill(a[i], v); } static void fill(boolean[][] a, boolean v) { for (int i = 0; i < a.length; i++) Arrays.fill(a[i], v); } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) fill(a[i], v); } static void fill(long[][][] a, long v) { for (int i = 0; i < a.length; i++) fill(a[i], v); } static int maxs(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long maxs(long... a) { long res = Long.MIN_VALUE; for (long i : a) { res = Math.max(res, i); } return res; } static double maxs(double... a) { double res = Double.MIN_VALUE; for (double i : a) { res = Math.max(res, i); } return res; } static long mins(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int maxs(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, maxs(i)); return res; } static long maxs(long[][] ar) { long res = Integer.MIN_VALUE; for (long i[] : ar) res = Math.max(res, maxs(i)); return res; } static int mins(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static int mins(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, mins(i)); return res; } public static long sum(ArrayList lis) { long res = 0; for (T li : lis) { res += li.longValue(); } return res; } static long sum(int[] a) { long cou = 0; for (int i : a) cou += i; return cou; } static long sum(long[] a) { long cou = 0; for (long i : a) cou += i; return cou; } //FastScanner static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer tokenizer = null; public static String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public static String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public static long nl() { return Long.parseLong(next()); } public static String n() { return next(); } public static int ni() { return Integer.parseInt(next()); } public static double nd() { return Double.parseDouble(next()); } public static int[] nia(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } //1-index public static int[] niao(int n) { int[] a = new int[n + 1]; for (int i = 1; i < n + 1; i++) { a[i] = ni(); } return a; } //番兵法 public static int[] nias(int n, int end) { int[] a = new int[n + 1]; for (int i = 0; i < n; i++) { a[i] = ni(); } a[n] = end; return a; } public static int[] niad(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni() - 1; } return a; } public static P[] npa(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni(), ni()); } return p; } public static P[] npad(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni() - 1, ni() - 1); } return p; } public static int[][] nit(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni(); } } return a; } public static int[][] nitd(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni() - 1; } } return a; } static int[][] S_ARRAY; static long[][] S_LARRAY; static int S_INDEX; static int S_LINDEX; //複数の配列を受け取る public static int[] niah(int n, int k) throws Exception { if (S_ARRAY == null) { S_ARRAY = new int[k][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < k; i++) { S_ARRAY[i][j] = ni(); } } } return S_ARRAY[S_INDEX++]; } public static long[] nlah(int n, int k) throws Exception { if (S_LARRAY == null) { S_LARRAY = new long[k][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < k; i++) { S_LARRAY[i][j] = nl(); } } } return S_LARRAY[S_LINDEX++]; } //複数の配列を受け取る public static int[] niahd(int n, int k) throws Exception { if (S_ARRAY == null) { S_ARRAY = new int[k][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < k; i++) { S_ARRAY[i][j] = ni() - 1; } } } return S_ARRAY[S_INDEX++]; } public static long[] nlahd(int n, int k) throws Exception { if (S_LARRAY == null) { S_LARRAY = new long[k][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < k; i++) { S_LARRAY[i][j] = nl() - 1; } } } return S_LARRAY[S_LINDEX++]; } public static char[] nca() { char[] a = next().toCharArray(); return a; } public static String[] nsa(int n) { String[] res = new String[n]; for (int i = 0; i < n; i++) { res[i] = n(); } return res; } //スペースが入っている場合 public static char[][] ncts(int h, int w) { char[][] a = new char[h][w]; for (int hi = 0; hi < h; hi++) { String s = nextLine().replace(" ", ""); for (int wi = 0; wi < s.length(); wi++) { a[hi][wi] = s.charAt(wi); } } return a; } public static char[][] nct(int h, int w) { char[][] a = new char[h][w]; for (int hi = 0; hi < h; hi++) { String s = nextLine(); for (int wi = 0; wi < s.length(); wi++) { a[hi][wi] = s.charAt(wi); } } return a; } public static char[][] nctp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; for (int hi = 1; hi < h + 1; hi++) { String s = nextLine(); for (int wi = 1; wi < s.length() + 1; wi++) { a[hi][wi] = s.charAt(wi - 1); } } for (int wi = 0; wi < w + 2; wi++) a[0][wi] = a[h + 1][wi] = c; for (int hi = 0; hi < h + 2; hi++) a[hi][0] = a[hi][w + 1] = c; return a; } //スペースが入ってる時用 public static char[][] nctsp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public static long[] nla(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nl(); } return a; } public static long[] nlas(int n, long e) { long[] a = new long[n + 1]; for (int i = 0; i < n; i++) { a[i] = nl(); } a[n] = e; return a; } public static long[] nlao(int n) { long[] a = new long[n + 1]; for (int i = 0; i < n; i++) { a[i + 1] = nl(); } return a; } public static long[] nlad(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nl() - 1; } return a; } public static long[][] nlt(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nl(); } } return a; } //便利クラス static class CouMap { public HashMap map; public HashMap smap; CouMap() { map = new HashMap(); smap = new HashMap(); } CouMap(int[] a) { map = new HashMap(); smap = new HashMap(); for (int i : a) { put(i); } } public int size() { return map.size(); } public void put(long key, long value) { Long nowValue = map.get(key); map.put(key, nowValue == null ? value : nowValue + value); } public void put(String key, long value) { Long nowValue = smap.get(key); smap.put(key, nowValue == null ? value : nowValue + value); } public void mput(long key, long value) { Long nowValue = map.get(key); map.put(key, nowValue == null ? value % MOD : mSum(nowValue, value)); } public void put(long key) { put(key, 1); } public void put(String key) { put(key, 1); } public void put(int... arg) { for (int i : arg) { put(i, 1); } } public void put(long... arg) { for (long i : arg) { put(i, 1); } } public void mput(int... arg) { for (int i : arg) { mput(i, 1); } } public void mput(long... arg) { for (long i : arg) { mput(i, 1); } } public long get(long key) { Long v = map.get(key); return v == null ? 0 : v; } public long get(String key) { Long v = map.get(key); return v == null ? 0 : v; } } static class P implements Comparable

{ int x, y; @Override public int compareTo(P p) { //xyで昇順 return x == p.x ? y - p.y : x - p.x; //xyで降順 //return (nowx == p.nowx ? nowy - p.nowy : nowx - p.nowx) * -1; //yxで昇順 //return nowy == p.nowy ? nowx - p.nowx : nowy - p.nowy; //yxで昇順 //return (nowy == p.nowy ? nowx - p.nowx : nowy - p.nowy) * -1; //x昇 y降 //return nowx == p.nowx ? p.nowy - nowy : nowx - p.nowx; //x降 y昇 //return (nowx == p.nowx ? p.nowy - nowy : nowx - p.nowx) * -1; //y昇 x降 //return nowy == p.nowy ? p.nowx - nowx : nowy - p.nowy; //y降 x昇 //return (nowy == p.nowy ? p.nowx - nowx : nowy - p.nowy) * -1; } P(int a, int b) { x = a; y = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof P)) return false; P p = (P) o; return x == p.x && y == p.y; } @Override public int hashCode() { return Objects.hash(x, y); } } static class PL implements Comparable { long x, y; public int compareTo(PL p) { //xyで昇順 long res = x == p.x ? y - p.y : x - p.x; //xyで降順 //long res = (nowx == p.nowx ? nowy - p.nowy : nowx - p.nowx) * -1; //yxで昇順 //long res = nowy == p.nowy ? nowx - p.nowx : nowy - p.nowy; //yxで昇順 //long res = (nowy == p.nowy ? nowx - p.nowx : nowy - p.nowy) * -1; //x昇 y降 //long res = nowx == p.nowx ? p.nowy - nowy : nowx - p.nowx; //x降 y昇 //long res = (nowx == p.nowx ? p.nowy - nowy : nowx - p.nowx) * -1; //y昇 x降 //long res = nowy == p.nowy ? p.nowx - nowx : nowy - p.nowy; //y降 x昇 //long res = (nowy == p.nowy ? p.nowx - nowx : nowy - p.nowy) * -1; return (res == 0) ? 0 : res > 0 ? 1 : -1; } PL(long a, long b) { x = a; y = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof PL)) return false; PL p = (PL) o; return x == p.x && y == p.y; } @Override public int hashCode() { return Objects.hash(x, y); } } //値を渡す際は半開区間 static class RectangleSum { //半開区間 0は0 long[][] rui; int H, W; RectangleSum(long[][] ori) { H = ori.length; W = ori[0].length; rui = new long[H + 1][W + 1]; for (int hi = 0; hi < H; hi++) { for (int wi = 0; wi < W; wi++) { rui[hi + 1][wi + 1] = ori[hi][wi]; } } for (int hi = 1; hi < H + 1; hi++) { for (int wi = 1; wi < W + 1; wi++) { rui[hi][wi] += rui[hi - 1][wi]; rui[hi][wi] += rui[hi][wi - 1]; rui[hi][wi] -= rui[hi - 1][wi - 1]; } } } RectangleSum(int[][] ori) { H = ori.length; W = ori[0].length; rui = new long[H + 1][W + 1]; for (int hi = 0; hi < H; hi++) { for (int wi = 0; wi < W; wi++) { rui[hi + 1][wi + 1] = ori[hi][wi]; } } for (int hi = 1; hi < H + 1; hi++) { for (int wi = 1; wi < W + 1; wi++) { rui[hi][wi] += rui[hi - 1][wi]; rui[hi][wi] += rui[hi][wi - 1]; rui[hi][wi] -= rui[hi - 1][wi - 1]; } } } //半開区間 public long getSum(int left, int right, int top, int bottom) { if (right > W || bottom > H) return 0; if (left < 0 || top < 0) return 0; if (top >= bottom || left >= right) return 0; long res = rui[bottom][right]; res -= rui[top][right]; res -= rui[bottom][left]; res += rui[top][left]; return res; } } public static void main(String[] args) throws Exception { long startTime = System.currentTimeMillis(); solve(); System.out.flush(); long endTime = System.currentTimeMillis(); if (DEBUG) System.err.println(endTime - startTime); } }