import std.algorithm, std.container, std.conv, std.math, std.range, std.typecons, std.stdio, std.string; auto rdsp(){return readln.splitter;} void pick(R,T)(ref R r,ref T t){t=r.front.to!T;r.popFront;} void readV(T...)(ref T t){auto r=rdsp;foreach(ref v;t)pick(r,v);} void readA(T)(size_t n,ref T[]t){t=new T[](n);auto r=rdsp;foreach(ref v;t)pick(r,v);} void main() { int n, k; readV(n, k); int[] a; readA(n, a); int[int] z; auto zn = 0, b = a.dup.sort().uniq.array; foreach (bi; b) z[bi] = zn++; auto c = a.map!(ai => z[ai]).array; auto fc = new FenwickTree!int(zn), fs = new FenwickTree!long(zn); foreach (i; 0..k) { fc[c[i]] += 1; fs[c[i]] += b[c[i]]; } auto ans = 10L^^18; foreach (i; 0..n-k+1) { auto s = iota(0, zn).map!(j => fc[0..j]).assumeSorted; if (k%2 == 0) { auto j1 = s.lowerBound(k/2).length-1, j2 = s.lowerBound(k/2+1).length-1; ans = min(ans, (fs[j2..$]-b[j2].to!long*(fc[j2..$]-k/2))-(fs[0..j1+1]-b[j1].to!long*(fc[0..j1+1]-k/2))); } else { auto j = s.lowerBound(k/2+1).length-1; ans = min(ans, (fs[j..$]-b[j].to!long*(fc[j..$]-k/2))-(fs[0..j+1]-b[j].to!long*(fc[0..j+1]-k/2))); } fc[c[i]] -= 1; fs[c[i]] -= b[c[i]]; fc[c[i+k]] += 1; fs[c[i+k]] += b[c[i+k]]; } writeln(ans); } class FenwickTree(T) { const size_t n; T[] buf; this(size_t n) { this.n = n; this.buf = new T[](n+1); } void opIndexOpAssign(string op)(T val, size_t i) if (op == "+" || op == "-") { ++i; for (; i <= n; i += i & -i) mixin("buf[i] " ~ op ~ "= val;"); } void opIndexUnary(string op)(size_t i) if (op == "++" || op == "--") { ++i; for (; i <= n; i += i & -i) mixin("buf[i]" ~ op ~ ";"); } pure T opSlice(size_t r, size_t l) { return get(l) - get(r); } pure T opIndex(size_t i) { return opSlice(i, i+1); } pure size_t opDollar() { return n; } private: pure T get(size_t i) { auto s = T(0); for (; i > 0; i -= i & -i) s += buf[i]; return s; } }