#include #define show(x) std::cerr << #x << " = " << x << std::endl using ll = long long; using ull = unsigned long long; template constexpr T INF = std::numeric_limits::max() / 10; constexpr std::size_t PC(ull v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast(v * 0x0101010101010101ULL >> 56 & 0x7f); } constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); } constexpr ull SZ(const ull v) { return 1ULL << LG(v); } template class LazySegmentTree { public: using BaseAlgebra = Base; using ValMonoid = typename BaseAlgebra::ValMonoid; using OpMonoid = typename BaseAlgebra::OpMonoid; using T = typename BaseAlgebra::T; using F = typename BaseAlgebra::OpMonoid::T; LazySegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id()) {} template LazySegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id()) { copy(first, last, value.begin() + half); for (std::size_t i = half - 1; i >= 1; i--) { up(i); } } T accumulate(const std::size_t L, const std::size_t R) const { auto arec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> T { if (L <= left and right <= R) { return value[index]; } else if (right <= L or R <= left) { return ValMonoid::id(); } else { return act(action[index], acc(self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right))); } }; return arec(arec, 1, 0, half); } void modify(const std::size_t L, const std::size_t R, const F& f) { auto mrec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> void { if (L <= left and right <= R) { this->update(index, f); } else if (right <= L or R <= left) { } else { this->update(index << 1, action[index]), this->update(index << 1 | 1, action[index]); self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right); this->up(index), action[index] = OpMonoid::id(); } }; mrec(mrec, 1, 0, half); } private: void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); } void update(const std::size_t i, const F& f) { value[i] = act(f, value[i]), action[i] = compose(f, action[i]); } const std::size_t data_num, half; std::vector value; std::vector action; const ValMonoid acc{}; const OpMonoid compose{}; const BaseAlgebra act{}; }; struct Sum_Set { using X = ll; using T = std::pair; // (value, num) struct ValMonoid { T operator()(const T& a, const T& b) const { return {a.first + b.first, a.second + b.second}; } static constexpr T id() { return {0, 0}; } }; struct OpMonoid { using T = X; T operator()(const T& f1, const T& f2) const { return (f1 != INF) ? f1 : f2; } static constexpr T id() { return INF; } }; T operator()(const OpMonoid::T& f, const T& x) const { return (f != INF) ? T{x.second * f, x.second} : x; } }; int main() { int N, Q; std::cin >> N >> Q; using T = Sum_Set::T; std::vector v(N, {0, 1}); LazySegmentTree seg1(v.begin(), v.end()), seg2(v.begin(), v.end()); ll b1 = 0, b2 = 0; for (int q = 0, x, l, r; q < Q; q++) { std::cin >> x >> l >> r; if (x == 0) { const ll sum = seg1.accumulate(l, r + 1).first; const ll num = seg2.accumulate(l, r + 1).first; const ll two = sum - num, one = num - two; if (two != one) { (two > one ? b2 : b1) += std::max(two, one); } } else if (x == 1) { seg1.modify(l, r + 1, 1), seg2.modify(l, r + 1, 1); } else { seg1.modify(l, r + 1, 2), seg2.modify(l, r + 1, 1); } } const ll sum = seg1.accumulate(0, N).first; const ll num = seg2.accumulate(0, N).first; const ll two = sum - num + b2, one = num - two + b1; std::cout << one << " " << two << std::endl; return 0; }