#include #include #include #include #include #include #include #include #include #include #include #include #define REP(i, n) for(int i = 0;i < n;i++) #define REPR(i, n) for(int i = n;i >= 0;i--) #define FOR(i, m, n) for(int i = m;i < n;i++) #define FORR(i, m, n) for(int i = m;i >= n;i--) #define SORT(v, n) sort(v, v+n); #define VSORT(v) sort(v.begin(), v.end()); #define llong long long #define pb(a) push_back(a) //#define INF ((LLONG_MAX) / (2)) using namespace std; typedef pair P; typedef pair LP; typedef pair PP; typedef pair LPP; typedef long long int ll; typedef pair LL_IP; typedef pair LL_LLP; #define INF 1e9+7 typedef struct union_find{ vector pa;//親 vector ra;//木の深さ vector num;//根についている個数 //n要素で初期化 void init(int n){ pa.resize(n); ra.resize(n); num.resize(n); for(int i = 0;i < n;i++){ pa[i] = i;/*各ノードに番号を振る,この時par[x]=xとなる時は木の根となる*/ ra[i] = 0;/*各ノード自体の高さは0*/ num[i] = 1; } } //木の根を求める int find(int x){ if(pa[x] == x){ return x;/*根ならそのノードの番号を返す*/ }else{ return pa[x] = find(pa[x]);/*根でないならさらにノードの根を探す*/ } } //xとyの属する集合を併合する void unite(int x,int y){ x = find(x);//xの根の番号を探す y = find(y);//yの根の番号を探す if(x == y){//一致すればつながっている return; } if(num[x] < num[y]){//xの高さが低いなら高いほうにつなぐ、そして高さは大きい方(y)になる pa[x] = y; num[y] += num[x]; }else{ pa[y] = x;//yの高さが低いなら高いほうにつなぐ、そして高さは大きいほう(x)になる num[x] += num[y]; if(ra[x] == ra[y]){//高さが一致しているなら併合の高さは1増える ra[x]++; } } } //xとyが同じ集合に属するか判定 bool same(int x,int y){ return find(x) == find(y);//同じ集合なら1、違うなら0が返る } }UF; UF tree; int main(){ int n,m; cin >> n >> m; tree.init(n); int a,b; REP(i,m){ cin >> a >> b; a--; b--; if(tree.pa[a] != tree.pa[b]){ //ボスが違う場合 if(tree.num[tree.pa[a]] < tree.num[tree.pa[b]]){ //親の個数が大きい方につなぐ tree.unite(tree.pa[b],tree.pa[a]); }else if(tree.num[tree.pa[a]] > tree.num[tree.pa[b]]){ tree.unite(tree.pa[a],tree.pa[b]); }else{ //親の個数が同じ場合 if(tree.pa[tree.pa[a]] < tree.pa[tree.pa[b]]){ //1位に近いほうにつなぐ tree.unite(tree.pa[a],tree.pa[b]); }else{ tree.unite(tree.pa[b],tree.pa[a]); } } } //ボスが同じなら何もしない } /*REP(i,n){ cout << tree.num[i] << " "; } cout << endl;*/ REP(i,n){ cout << tree.find(i)+1 << endl; } return 0; }