#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); let mut next = || { iter.next().unwrap() }; input_inner!{next, $($r)*} }; ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } /// FFT (in-place) /// R: Ring + Copy /// Verified by: ATC001-C (http://atc001.contest.atcoder.jp/submissions/1175827) mod fft { use std::ops::*; fn inplace_internal_fft( f: &[R], output: &mut [R], pztbl: &[R], one: R, x: usize, fstart: usize, fstep: usize, n: usize, ostart: usize) where R: Copy + Add + Sub + Mul { if n == 1 { output[ostart] = f[fstart]; return; } inplace_internal_fft(f, output, pztbl, one, x + 1, fstart, 2 * fstep, n / 2, ostart); inplace_internal_fft(f, output, pztbl, one, x + 1, fstart + fstep, 2 * fstep, n / 2, ostart + n / 2); let mut cnt = 0; for i in 0 .. n / 2 { let pzeta = pztbl[cnt]; let f0 = output[ostart + i]; let f1 = output[ostart + i + n / 2]; let tmp = pzeta * f1; output[ostart + i] = f0 + tmp; output[ostart + i + n / 2] = f0 - tmp; cnt += 1 << x; } } /// n should be a power of 2. zeta is a primitive n-th root of unity. /// one is unity /// Note that the result should be multiplied by 1/sqrt(n). pub fn transform(f: &[R], zeta: R, one: R) -> Vec where R: Copy + Add + Sub + Mul { let n = f.len(); assert!(n.is_power_of_two()); let mut pztbl = vec![one; n]; for i in 1 .. n { pztbl[i] = pztbl[i - 1] * zeta; } let mut output = vec![zeta; n]; inplace_internal_fft(&f, &mut output, &pztbl, one, 0, 0, 1, n, 0); output } } /// Verified by: https://beta.atcoder.jp/contests/arc099/submissions/3515280 mod mod_int { use std::ops::*; pub trait Mod: Copy + Clone { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData<*const M> } impl ModInt { fn check_integrity(self) { debug_assert!(self.x >= 0); debug_assert!(self.x < M::m()); } // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } #[allow(dead_code)] pub fn mul_fast(self, other: Self) -> Self { self.check_integrity(); other.check_integrity(); ModInt::new_internal(self.x * other.x % M::m()) } #[allow(dead_code)] pub fn mul_slow(self, other: Self) -> Self { // Naive multiplication in order to avoid overflow self.check_integrity(); other.check_integrity(); let mut sum = ModInt::new_internal(0); let mut cur = self; let mut e = other.x; if self.x < other.x { cur = other; e = self.x; } while e > 0 { if e % 2 == 1 { sum += cur; } cur += cur; e /= 2; } sum } pub fn pow(self, mut e: i64) -> Self { self.check_integrity(); debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl Add for ModInt { type Output = Self; fn add(self, other: Self) -> Self { self.check_integrity(); other.check_integrity(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl Sub for ModInt { type Output = Self; fn sub(self, other: Self) -> Self { self.check_integrity(); other.check_integrity(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl Mul for ModInt { type Output = Self; fn mul(self, other: Self) -> Self { self.mul_fast(other) } } impl AddAssign for ModInt { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl SubAssign for ModInt { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl MulAssign for ModInt { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl ::std::fmt::Debug for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD1: i64 = 998244353; const MOD2: i64 = 1004535809; define_mod!(P1, MOD1); define_mod!(P2, MOD2); type ModInt1 = mod_int::ModInt; type ModInt2 = mod_int::ModInt; use mod_int::*; const N: usize = 1 << 20; fn calc(n: usize, pr: &[bool], zeta: ModInt) -> ModInt { let zeta = zeta.pow((M::m() - 1) / N as i64); let zeta_inv = zeta.inv(); let mut f = vec![ModInt::new(0); N]; let mut f2 = vec![ModInt::new(0); N]; let mut f3 = vec![ModInt::new(0); N]; for i in 1 .. n + 1 { if pr[i] { f[i] = ModInt::new(1); f2[2 * i] = ModInt::new(1); f3[3 * i] = ModInt::new(1); } } // f^3 - 3 * f2 * f + 2 * f3 let f = fft::transform(&f, zeta, ModInt::new(1)); let f2 = fft::transform(&f2, zeta, ModInt::new(1)); let f3 = fft::transform(&f3, zeta, ModInt::new(1)); let mut g = vec![ModInt::new(0); N]; for i in 0 .. N { g[i] = f[i].pow(3) - ModInt::new(3) * f2[i] * f[i] + f3[i] + f3[i]; } let g = fft::transform(&g, zeta_inv, ModInt::new(1)); let mut tot = ModInt::new(0); for i in 2 .. N { if pr[i] { tot += g[i]; } } tot *= ModInt::new(N as i64).inv(); tot *= ModInt::new(6).inv(); tot } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($format:expr) => (write!(out,$format).unwrap()); ($format:expr, $($args:expr),+) => (write!(out,$format,$($args),*).unwrap()) } let mut pr = vec![true; N]; pr[0] = false; pr[1] = false; for i in 2 .. N { if !pr[i] { continue; } for j in 2 .. (N - 1) / i + 1 { pr[i * j] = false; } } input! { n: usize, } let a: ModInt1 = calc(n, &pr, ModInt::new(3)); let b: ModInt2 = calc(n, &pr, ModInt::new(3)); let factor2 = ModInt2::new(P1::m()).inv(); let factor1 = ModInt1::new(P2::m()).inv(); puts!("{}\n", ((b * factor2).x * P1::m() + (a * factor1).x * P2::m()) % (P1::m() * P2::m())); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }