import std.algorithm, std.container, std.conv, std.math, std.range, std.typecons, std.stdio, std.string; auto rdsp(){return readln.splitter;} void pick(R,T)(ref R r,ref T t){t=r.front.to!T;r.popFront;} void readV(T...)(ref T t){auto r=rdsp;foreach(ref v;t)pick(r,v);} void readC(T...)(size_t n,ref T t){foreach(ref v;t)v=new typeof(v)(n);foreach(i;0..n){auto r=rdsp;foreach(ref v;t)pick(r,v[i]);}} void main() { int n; readV(n); double[] l; readC(n+2, l); auto l0 = l[0], lc = l.cumulativeSum; auto ll = new double[](n+2), lr = new double[](n+2); ll[1] = l[1]; foreach (i; 2..n+2) ll[i] = max(ll[i-1], l[i]); lr[n+1] = l[n+1]; foreach_reverse (i; 1..n+1) lr[i] = max(lr[i+1], l[i]); writeln(0); foreach (i; 2..n) { auto a = lc[1..i+1], b = max(2*ll[i]-a, 0); auto c = lc[i+1..$], d = max(2*lr[i+1]-c, 0); auto a2 = a^^2, b2 = b^^2, c2 = c^^2, d2 = d^^2; double f(double x) { auto ay = 0.0L, by = 0.0L, cy = 0.0L, dy = 0.0L; if (-a < x && x < a) ay = a2-x^^2; if (-b < x && x < b) by = b2-x^^2; if (l0-c < x && x < l0+c) cy = c2-(x-l0)^^2; if (l0-d < x && x < l0+d) dy = d2-(x-l0)^^2; return max(0.0L, min(ay, cy).sqrt-max(by, dy).sqrt); } writefln("%.7f", integrateDE((x) => f(x), -a, l0+c, 1e-6)*2); } writeln(0); } class CumulativeSum(T) { size_t n; T[] s; this(T[] a) { n = a.length; s = new T[](n+1); s[0] = T(0); foreach (i; 0..n) s[i+1] = s[i] + a[i]; } T opSlice(size_t l, size_t r) { return s[r]-s[l]; } size_t opDollar() { return n; } } auto cumulativeSum(T)(T[] a) { return new CumulativeSum!T(a); } double integrateDE(double delegate(double) f, double a, double b, double eps = 1e-8) { import std.math; const auto c = asin(1.0), tm = 10.0; double delegate(double) x, g; if (!a.isInfinity && !b.isInfinity) { x = (double t) => (b+a)/2 + (b-a)/2*tanh(c*sinh(t)); g = (double t) => c*(b-a)/2*cosh(t)/cosh(c*sinh(t))^^2; } else if (!a.isInfinity) { x = (double t) => a + exp(c*sinh(t)); g = (double t) => c*cosh(t)*exp(c*sinh(t)); } else if (!b.isInfinity) { x = (double t) => b - exp(c*sinh(-t)); g = (double t) => c*cosh(t)*exp(c*sinh(-t)); } else { x = (double t) => sinh(c*sinh(t)); g = (double t) => c*cosh(t)*cosh(c*sinh(t)); } auto s = 0.0, h = 1.0/c; auto cnt = 0; for (;;) { auto i = 0.0; for (auto t = 0.0; t < tm; t = t > 0 ? -t : -t+h) { auto di = f(x(t)) * g(t) * h; if (!di.isNaN) i += di; } if (abs(i-s) < abs(i)*eps) return i; s = i; h /= 2; } }