#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include #include #include using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } typedef vector vi; typedef vector vvi; typedef vector vll; typedef vector vvll; typedef vector vs; typedef pair pii; typedef long long ll; typedef pair pll; typedef unsigned long long ull; //repetition //------------------------------------------ #define REP(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) REP(i,0,n) #define rrep(i,n) for(int i=(n);i>=0;i--) #define VEC_2D(a,b) vector >(a, vector(b, 0)) #define ALL(a) (a).begin(),(a).end() #define RALL(a) (a).rbegin(), (a).rend() #define pb push_back #define mp make_pair #define INF (1001000000) #define SZ(a) int((a).size()) #define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i) #define EXIST(s,e) ((s).find(e)!=(s).end()) #define SORT(c) sort((c).begin(),(c).end()) #define UNIQ(c) (c).erase(unique((c).begin(),(c).end()), (c).end()); #define MOD 1000000007LL #define MS(v,n) memset((v),(n),sizeof(v)) //input #define VEC(type, c, n) std::vector c(n);for(auto& i:c)std::cin>>i; //output #define P(p) cout<<(p)< T gcd(T x, T y) { if (y == 0) return x; else return gcd(y, x%y); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } template bool is_prime(T n) { for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return n != 1; } map prime_factor(ll n) { map res; for (int i = 2; i * i <= n; i++) { while (n % i == 0) { ++res[i]; n /= i; } } if (n != 1) res[n] = 1; return res; } int extgcd(int a, int b, int& x, int& y) {// int d = a; if (b != 0) { d = extgcd(b, a%b, y, x); y -= (a / b)*x; } else { x = 1; y = 0; } return d; } ll mod_pow(ll x, ll n, ll mod) { if (n == 0) return 1; ll res = mod_pow(x * x % mod, n / 2, mod); if (n & 1) res = res * x % mod; return res; } ll comb(ll a, ll b, ll mod) { ll mul = 1; ll div = 1; rep(i, b) { mul *= (a - (ll)i); mul %= mod; div *= ((ll)i + 1); div %= mod; } mul *= mod_pow(div, mod - 2,mod); return mul%mod; } vector split(const string &str, char delim) { vector res; size_t current = 0, found; while ((found = str.find_first_of(delim, current)) != string::npos) { res.push_back(string(str, current, found - current)); current = found + 1; } res.push_back(string(str, current, str.size() - current)); return res; } bool is_kadomatsu(int a, int b, int c) { if (a == b || a == c || b == c)return false; if (a > b && c > b) return true; if (a < b && c < b)return true; return false; } struct UF { int n; vi d; UF() {} UF(int n) :n(n), d(n, -1) {} int root(int v) { if (d[v] < 0) return v; return d[v] = root(d[v]); } bool same(int a, int b) { return root(a) == root(b); } bool unite(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (size(x) < size(y)) swap(x, y); d[x] += d[y]; d[y] = x; return true; } int size(int v) { return -d[root(v)]; } }; struct Fibonacci { vvll fib; Fibonacci() { fib.resize(2, vll(2)); fib[0][0] = 1; fib[0][1] = 1; fib[1][0] = 1; fib[1][1] = 0; } vvll mul(vvll &A, vvll &B) { vvll C(2, vll(2)); rep(i, 2) { rep(k, 2) { rep(j, 2) { C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD; } } } return C; } ll pow(ll n) { vvll A = fib; vvll B(2, vll(2)); rep(i, 2) { B[i][i] = 1; } while (n > 0) { if (n & 1)B = mul(B, A); A = mul(A, A); n >>= 1; } return B[1][0]; } }; vector divisor(int n) { if (n == 1) return{}; vi res; for (int i = 1; i*i <= n; i++) { if (n%i == 0) { res.emplace_back(i); if (i != 1 && i != n / i)res.emplace_back(n / i); } } return res; } struct Bellmanford { int n; struct edge { int from, to, cost; }; vector E; vi d; Bellmanford(int n) :n(n), d(n) { E.resize(n); } void add_edge(int x, int y, int cost) { edge e; e.from = x; e.to = y; e.cost = cost; E.push_back(e); } void shortest_path(int s) { rep(i, n)d[i] = INF; d[s] = 0; while (true) { bool update = false; for (auto e : E) { if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) { d[e.to] = d[e.from] + e.cost; update = true; } } if (!update) break; } } }; struct Dijkstra { int n; struct edge { int to; ll cost; }; vector> G; vll d; Dijkstra(int n) :n(n), d(n) { G.resize(n); } void add_edge(int x, int y, ll cost) { edge e; e.to = y; e.cost = cost; G[x].push_back(e); } void shortest_path(int s) { rep(i, n)d[i] = 100000000000000000; d[s] = 0; priority_queue, vector>, greater>> que; que.push(make_pair(0, s)); while (!que.empty()) { pii p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; for (auto e : G[v]) { if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; que.push(make_pair(d[e.to], e.to)); } } } } }; struct Segmenttree { int n; vector dat; Segmenttree(int n_) { n = 1; while (n < n_) n *= 2; dat = vector(2 * n - 1, 0); } void add(int idx, ll val) {//0-indexed idx += n - 1; dat[idx] += val; while (idx > 0) { idx = (idx - 1) / 2; dat[idx] += val; } } int query(int a, int b) { return query_seg(a, b, 0, 0, n); } int query_seg(int a, int b, int k, int l, int r) { if (r <= a || b <= l) return 0; if (a <= l && r <= b)return dat[k]; else { return query_seg(a, b, k * 2 + 1, l, (l + r) / 2) + query_seg(a, b, k * 2 + 2, (l + r) / 2, r); } } }; struct Trie { Trie *next[26]; Trie() { fill(next, next + 26, (Trie *)0); } void insert(char *s) { if (*s == '\0') return; if (this->next[*s - 'a'] == NULL) { this->next[*s - 'a'] = new Trie(); } this->next[*s - 'a']->insert(s + 1); } bool find(char *s) { if (*s == '\0') return true; if (this->next[*s - 'a'] == NULL) { return false; } return this->next[*s - 'a']->find(s + 1); } }; struct BIT { int n; vi bit; BIT() {} BIT(int n):n(n) { bit.resize(n + 1); } int sum(int i) { int s = 0; while (i > 0) { s += bit[i]; i -= i&-i; } return s; } void add(int i, int x) { while (i <= n) { bit[i] += x; i += i&-i; } } }; /* struct edge { int to, cap, rev; }; vector G[200005]; int level[200005]; int iter[200005]; void add_edge(int from, int to, int cap) { G[from].push_back({ to, cap, (int)G[to].size() }); G[to].push_back({ from, 0, (int)G[from].size() - 1 }); } void fbfs(int s) { memset(level, -1, sizeof(level)); queue que; level[s] = 0; que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (edge &e : G[v]) { if (e.cap > 0 && level[e.to] < 0) { level[e.to] = level[v] + 1; que.push(e.to); } } } } int fdfs(int v, int t, int f) { if (v == t) return f; for (edge &e : G[v]) { if (e.cap > 0 && level[v] < level[e.to]) { int d = fdfs(e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; } int max_flow(int s, int t) { int flow = 0; for (;;) { fbfs(s); if (level[t] < 0) return flow; memset(iter, 0, sizeof(iter)); int f; while ((f = fdfs(s, t, INF)) > 0) { flow += f; } } } */ //------------------------ ll calc(ll a, ll b) { ll ret = 1; for (ll i = 1; i <= b; i++) { ret *= a--; ret /= i; } return ret; } ll powc(ll a, ll b) { ll ret = 1; rep(i, b)ret *= a; return ret; } int main() { cin.tie(0); ios::sync_with_stdio(false); int q; cin >> q; while (q--) { ll d, x, t; cin >> d >> x >> t; ll s = 1; for (ll i = 1; i <= d - 1; i++) { s *= (x + d-i); s /= i; if (s > t) break; } if (s <= t) { P("AC"); } else { P("ZETUBOU"); } } return 0; }