import std.conv, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.container, std.math, std.numeric, std.range, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(T)(in T[] as, in bool delegate(T) test) { int low = -1, upp = cast(int)(as.length); for (; low + 1 < upp; ) { int mid = (low + upp) >> 1; (test(as[mid]) ? low : upp) = mid; } return upp; } int lowerBound(T)(in T[] as, in T val) { return as.binarySearch((T a) => (a < val)); } int upperBound(T)(in T[] as, in T val) { return as.binarySearch((T a) => (a <= val)); } /* P = 10^9 + 7 (5 / P) = (P / 5) = (2 / 5) = -1 fib(n) = A r^n + B s^n; r, s in F_p[T] / (T^2 - T - 1) r^p = s (Frobenius) r^(p+1) = r s = -1 r^(2(p+1)) = 1 */ long[2] mul(long[2] a, long[2] b, long m) { return [ ((a[0] * b[0]) % m + (a[1] * b[1]) % m) % m, ((a[0] * b[1]) % m + (a[1] * b[0]) % m + (a[1] * b[1]) % m) % m ]; } long fib(long n, long m) { long[2] a = [0, 1]; long[2] b = [1, 0]; for (; n; n >>= 1) { if (n & 1) { b = mul(b, a, m); } a = mul(a, a, m); } return b[1]; } void main() { enum P = 10^^9 + 7; try { for (; ; ) { const N = readLong(); const f = fib(N, 2 * (P + 1)); const ans = fib(f, P); writeln(ans); } } catch (EOFException e) { } }