#include using namespace std; //#define int long long typedef long long ll; typedef long double ld; typedef pair pii; typedef pair pll; typedef vector vi; typedef vector vl; typedef vector vst; typedef vector vb; typedef vector vld; typedef vector vpii; typedef vector vpll; typedef vector > vvi; const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const int MOD = 1e9 + 7; const int MODD = 998244353; const string alphabet = "abcdefghijklmnopqrstuvwxyz"; const double PI = acos(-1.0); const double EPS = 1e-9; const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; int dx[9] = { 1, 0, -1, 0, 1, -1, -1, 1, 0 }; int dy[9] = { 0, 1, 0, -1, -1, -1, 1, 1, 0 }; #define ln '\n' #define scnaf scanf #define sacnf scanf #define sancf scanf #define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template void MACRO_VAR_Scan(T& t){cin >> t;}template void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);} #define SV(type,c,n) vector c(n);for(auto& i:c)cin >> i; #define SVV(type,c,n,m) vector> c(n,vector(m));for(auto& r:c)for(auto& i:r)cin >> i; templateostream &operator<<(ostream &o,const vector&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<ostream &operator<<(ostream &o,const pair&j){o<<"{"<ostream &operator<<(ostream &o,const map&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} templateostream &operator<<(ostream &o,const set&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} inline int print(void){cout << endl; return 0;} template int print(Head&& head){cout << head;print();return 0;} template int print(Head&& head,Tail&&... tail){cout<(tail)...);return 0;} inline int debug(void){cerr << endl; return 0;} template int debug(Head&& head){cerr << head;debug();return 0;} template int debug(Head&& head,Tail&&... tail){cerr<(tail)...);return 0;} template void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii void PV(T &v){int VSIZE=v.size();for(int ii=0;ii void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<=ll(b);--i) #define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__) #define EACH(e,v) for(auto& e : v) #define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end())) #define ADD(a,b) a=(a+ll(b))%MOD #define MUL(a,b) a=(a*ll(b))%MOD inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;} inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;} template inline bool between(T x,A a,B b) {return ((a<=x)&&(x inline T sqr(T x){return x*x;} template inline bool chmax(A &a,const B &b){if(a inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;} #define tmax(x,y,z) max((x),max((y),(z))) #define tmin(x,y,z) min((x),min((y),(z))) #define PB push_back #define MP make_pair #define MT make_tuple #define all(v) (v).begin(),(v).end() #define rall(v) (v).rbegin(),(v).rend() #define SORT(v) sort((v).begin(),(v).end()) #define RSORT(v) sort((v).rbegin(),(v).rend()) #define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end()) #define EXISTST(s,c) (((s).find(c))!=string::npos) #define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin()) #define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin()) #define GEQ(x,val) (int)(x).size() - POSL((x),(val)) #define GREATER(x,val) (int)(x).size() - POSU((x),(val)) #define LEQ(x,val) POSU((x),(val)) #define LESS(x,val) POSL((x),(val)) #define SZV(a) int((a).size()) #define SZA(a) sizeof(a)/sizeof(a[0]) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define MEMINF(a) memset(a,0x3f,sizeof(a)) #define FILL(a,b) memset(a,b,sizeof(a)) #define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end()) struct abracadabra{ abracadabra(){ cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); cerr << fixed << setprecision(5); }; } ABRACADABRA; //---------------8<---------------8<---------------8<---------------8<---------------// /* ・グラフ > Dijkstra > BellmanFord > WarshallFloyd > Kruskal [応用] 単一終点最短路問題は, すべての有向辺を逆向きに張り替えると, 単一始点最短路問題に帰着できる. [使用例] Graph g(N); // 頂点数N, 重さの型がintのグラフを宣言 add_edge(g,a,b,c); // グラフgに, aからbへの重さcの無向辺を追加 add_arc(g,a,b,c); // グラフgに, aからbへの重さcの有向辺を追加 add_to_edges(edges,a,b,c); // 辺集合edgesに, 始点a, 終点b, 重さcの辺を追加 */ template struct Edge { int from, to; T weight; Edge() : from(0), to(0), weight(0) {} Edge(int f, int t, T w) : from(f), to(t), weight(w) {} }; template using Edges = vector< Edge< T > >; template using Graph = vector< Edges< T > >; template void add_edge(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); g[to].emplace_back(to,from,w); } template void add_arc(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); } template void add_to_edges(Edges< T > &e, int from, int to, T w = 1) { e.emplace_back(from,to,w); } /* ・ダイクストラ法 > O(ElogV) [E:辺の数, V:頂点の数] [備考] 負辺の存在しないグラフに対する単一始点全点間最短路を求めるアルゴリズム [注意] 結果を足し合わせる際, INFの大きさに注意 [使用例] auto dij = Dijkstra(g,s); // グラフgにおける, 始点sからの最短路 */ template vector< T > Dijkstra(Graph &g, int from) { const auto INF = numeric_limits< T >::max()/10; vector< T > dist(g.size(), INF); dist[from] = 0; using Pi = pair< T, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; que.emplace(dist[from], from); while ( !que.empty() ) { T weight; int idx; tie(weight, idx) = que.top(); que.pop(); if (dist[idx] < weight) continue; for (auto &e : g[idx]) { auto next_weight = weight + e.weight; if (dist[e.to] <= next_weight) continue; dist[e.to] = next_weight; que.emplace(dist[e.to], e.to); } } return dist; } signed main() { SS(int, N, M, L); --L; SV(int, T, N); Graph g(N); REP(i, M) { SS(ll,a,b,c); --a, --b; add_edge(g,a,b,c); } auto dij = Dijkstra(g, L); ll res = INFF; REP(fin, N) { ll tmp = 0, mx = -INFF; auto dij2 = Dijkstra(g, fin); REP(car, N) { tmp += dij2[car] * T[car] * 2; if (T[car] != 0) chmax(mx, dij2[car] - dij[car]); } if (T[L] != 0) tmp -= dij[fin]; else tmp -= mx; chmin(res, tmp); } print(res); }