#include #include #include /* * Fast fourier transformation. n must be a power of 2. * header requirement: vector, complex */ class FFT { private: typedef std::complex comp; static void inplace_internal_fft( comp const *f, comp *output, comp const *ztbl, int x, int fstart, int fstep, int n, int ostart) { if (n == 1) { output[ostart] = f[fstart]; return; } inplace_internal_fft(f, output, ztbl, x + 1, fstart, 2 * fstep, n / 2, ostart); inplace_internal_fft(f, output, ztbl, x + 1, fstart + fstep, 2 * fstep, n / 2, ostart + n / 2); comp zeta = ztbl[x]; comp pzeta = 1; for (int i = 0; i < n / 2; ++i) { comp f0 = output[ostart + i]; comp f1 = output[ostart + i + n / 2]; output[ostart + i] = f0 + pzeta * f1; output[ostart + i + n / 2] = f0 - pzeta * f1; pzeta *= zeta; } return; } public: static int ceil_pow2(int n) { while (n & (n -1)) { n += n & (-n); } return n; } static std::vector transform(std::vector f, int n) { const double pi = 3.141592653589793238463; int p = __builtin_popcount(n - 1); // n = 2^p std::vector ztbl(p); for (int i = 0; i < p; ++i) { int d = n >> i; comp zeta = comp(cos(2 * pi / d), sin(2 * pi / d)); ztbl[i] = zeta; } std::vector output(n); inplace_internal_fft(&f[0], &output[0], &ztbl[0], 0, 0, 1, n, 0); return output; } static std::vector inverse_transform(std::vector f, int n) { const double pi = 3.141592653589793238463; int p = __builtin_popcount(n - 1); // n = 2^p std::vector ztbl(p); for (int i = 0; i < p; ++i) { int d = n >> i; comp zeta = comp(cos(2 * pi / d), - sin(2 * pi / d)); ztbl[i] = zeta; } std::vector output(n); inplace_internal_fft(&f[0], &output[0], &ztbl[0], 0, 0, 1, n, 0); for (int i = 0; i < n; i++) { output[i] /= n; } return output; } }; #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef complex comp; int main(void) { int l, m, n; cin >> l >> m >> n; n = FFT::ceil_pow2(n) * 2; vector a(n), b(n); REP(i, 0, l) { int t; cin >> t; a[t - 1] = 1; } REP(i, 0, m) { int t; cin >> t; b[n / 2 - t] = 1; } a = FFT::transform(a, n); b = FFT::transform(b, n); REP(i, 0, n) { a[i] *= b[i]; } a = FFT::inverse_transform(a, n); int q; cin >> q; REP(i, 0, q) { cout << (int)(a[n / 2 - 1 + i].real() + 0.5) << endl; } }