// コメント修正, 再提出. #include using namespace std; typedef long long LL; const LL MOD = 1e6 + 3; // x の A乗 を MOD で割った余りを計算. // @param x: 底. // @param A: 冪指数. // @return ans: x の A乗 を MOD で割ったときの余り. LL mod(LL x, LL A){ // 1. A を 2で割っていく. map m; while(A){ LL q = A / 2; LL r = A % 2; m[q] = r; A /= 2; } // for(auto &p : m) cout << p.first << " " << p.second << endl; // 2. 1. の 結果から, 余りを逆算. LL ans = 1; for(auto &p : m){ // A が 0 でない場合は, ans = ans * ans で, もとのべき乗数が復元されると解釈する. // -> ex. 729 = 3 * 3 * 3 * 3 * 3 * 3 (= 3 の 6乗)なので, // (3 * 3 * 3) * (3 * 3 * 3) = 729 と読み替えると, // 729 は, (3 * 3 * 3) の 2乗 と見ることが出来るからである. if(p.first != 0) ans *= ans, ans %= MOD; // 余りが 1 の場合は, 底が, 1回分多く掛け算されていると解釈する. if(p.second == 1) ans *= x, ans %= MOD; } return ans; } int main() { // 1. 入力情報取得. LL x, N; cin >> x >> N; // 2. 各べき乗の項の合計は? LL ans = 0; for(LL i = 0; i < N; i++){ LL a; cin >> a; ans += mod(x, a); ans %= MOD; } // 3. 後処理. cout << ans << endl; return 0; }