#include using namespace std; using vi = vector; using vvi = vector; using vvvi = vector; using ll = long long int; using vll = vector; using vvll = vector; using vvvll = vector; using vd = vector; using vvd = vector; using vvvd = vector; using P = pair; using Pll = pair; using cdouble = complex; const double INFD = numeric_limits::infinity(); const double PI = 3.14159265358979323846; #define Loop(i, n) for(int i = 0; i < (int)(n); i++) #define Loop1(i, n) for(int i = 1; i <= (int)(n); i++) #define Loopr(i, n) for(int i = (int)(n) - 1; i >= 0; i--) #define Loopr1(i, n) for(int i = (int)(n); i >= 1; i--) #define Foreach(buf, container) for(auto buf : container) #define Loopdiag(i, j, h, w, sum) for(int i = ((sum) >= (h) ? (h) - 1 : (sum)), j = (sum) - i; i >= 0 && j < (w); i--, j++) #define Loopdiagr(i, j, h, w, sum) for(int j = ((sum) >= (w) ? (w) - 1 : (sum)), i = (sum) - j; j >= 0 && i < (h); j--, i++) #define Loopdiagsym(i, j, h, w, gap) for (int i = ((gap) >= 0 ? (gap) : 0), j = i - (gap); i < (h) && j < (w); i++, j++) #define Loopdiagsymr(i, j, h, w, gap) for (int i = ((gap) > (h) - (w) - 1 ? (h) - 1 : (w) - 1 + (gap)), j = i - (gap); i >= 0 && j >= 0; i--, j--) #define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++) #define printv(vector) Loop(ex_i, vector.size()) { cout << vector[ex_i] << " "; } cout << endl; #define printmx(matrix) Loop(ex_i, matrix.size()) { Loop(ex_j, matrix[ex_i].size()) { cout << matrix[ex_i][ex_j] << " "; } cout << endl; } #define quickio() ios::sync_with_stdio(false); cin.tie(0); #define bitmanip(m,val) static_cast>(val) #define Comp(type_t) bool operator<(const type_t &another) const #define fst first #define snd second bool nearlyeq(double x, double y) { return abs(x - y) < 1e-9; } bool inrange(int x, int t) { return x >= 0 && x < t; } bool inrange(vi xs, int t) { Foreach(x, xs) if (!(x >= 0 && x < t)) return false; return true; } ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); } ll floorsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (m * m <= x ? 0 : -1); } ll ceilsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (x <= m * m ? 0 : 1); } ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); } ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } /*******************************************************/ vvd solve_p_table(int n, vi &a, double pa) { vvd ret(n, vd(n)); vd ps(1 << n); ps[(1 << n) - 1] = 1; Loopr(mask, 1 << n) { int minv = INT_MAX, minid = 0, cnt = 0; Loop(i, n) { if ((1 << i) & mask) { cnt++; if (a[i] < minv) { minv = a[i]; minid = i; } } } int turn = n - cnt; Loop(i, n) { if ((1 << i) & mask) { if (i == minid) { if (cnt > 1) { ps[mask ^ (1 << i)] += ps[mask] * pa; ret[turn][i] += ps[mask] * pa; } else if (cnt == 1) { ps[mask ^ (1 << i)] += ps[mask]; ret[turn][i] += ps[mask]; } } else { if (cnt > 1) { ps[mask ^ (1 << i)] += ps[mask] * double(1 - pa) / (cnt - 1); ret[turn][i] += ps[mask] * double(1 - pa) / (cnt - 1); } } } } } return ret; } double solve(int n, vvd &pa, vvd &pb, vi &a, vi &b) { vd ret(n); Loop(i, n) { Loop(ja, n) { Loop(jb, n) { if (a[ja] > b[jb]) { ret[i] += (a[ja] + b[jb]) * pa[i][ja] * pb[i][jb]; } } } } return accumulate(ret.begin(), ret.end(), 0.0); } int main() { int n; cin >> n; double pa, pb; cin >> pa >> pb; vi a(n), b(n); Loop(i, n) cin >> a[i]; Loop(i, n) cin >> b[i]; vvd table_a = solve_p_table(n, a, pa); vvd table_b = solve_p_table(n, b, pb); cout << setprecision(12) << solve(n, table_a, table_b, a, b) << endl; }