#include using namespace std; using vi = vector; using vvi = vector; using vvvi = vector; using ll = long long int; using vll = vector; using vvll = vector; using vvvll = vector; using vd = vector; using vvd = vector; using vvvd = vector; using P = pair; using Pll = pair; using cdouble = complex; const double eps = 1e-9; const double INFD = numeric_limits::infinity(); const double PI = 3.14159265358979323846; #define Loop(i, n) for(int i = 0; i < (int)(n); i++) #define Loop1(i, n) for(int i = 1; i <= (int)(n); i++) #define Loopr(i, n) for(int i = (int)(n) - 1; i >= 0; i--) #define Loopr1(i, n) for(int i = (int)(n); i >= 1; i--) #define Foreach(buf, container) for(auto buf : container) #define Loopdiag(i, j, h, w, sum) for(int i = ((sum) >= (h) ? (h) - 1 : (sum)), j = (sum) - i; i >= 0 && j < (w); i--, j++) #define Loopdiagr(i, j, h, w, sum) for(int j = ((sum) >= (w) ? (w) - 1 : (sum)), i = (sum) - j; j >= 0 && i < (h); j--, i++) #define Loopdiagsym(i, j, h, w, gap) for (int i = ((gap) >= 0 ? (gap) : 0), j = i - (gap); i < (h) && j < (w); i++, j++) #define Loopdiagsymr(i, j, h, w, gap) for (int i = ((gap) > (h) - (w) - 1 ? (h) - 1 : (w) - 1 + (gap)), j = i - (gap); i >= 0 && j >= 0; i--, j--) #define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++) #define printv(vector) Loop(ex_i, vector.size()) { cout << vector[ex_i] << " "; } cout << endl; #define printmx(matrix) Loop(ex_i, matrix.size()) { Loop(ex_j, matrix[ex_i].size()) { cout << matrix[ex_i][ex_j] << " "; } cout << endl; } #define quickio() ios::sync_with_stdio(false); cin.tie(0); #define bitmanip(m,val) static_cast>(val) #define Comp(type_t) bool operator<(const type_t &another) const #define fst first #define snd second bool nearlyeq(double x, double y) { return abs(x - y) < eps; } bool inrange(int x, int t) { return x >= 0 && x < t; } bool inrange(vi xs, int t) { Foreach(x, xs) if (!(x >= 0 && x < t)) return false; return true; } ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); } ll floorsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (m * m <= x ? 0 : -1); } ll ceilsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (x <= m * m ? 0 : 1); } ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); } ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } /*******************************************************/ int n, m; vvi mx; vvi perms; template class Partial_Permutation { private: int n; vector used; vector> result; vvi facts; // iPj void core_func(const vector &a, int n, int r, int start) { if (r == 0) return; int m = facts[n - 1][r - 1]; int cnt = 0; Loop(i, Partial_Permutation::n) { if (!used[i]) { Loop(j, m) { result[start + m * cnt + j].push_back(a[i]); } used[i] = true; core_func(a, n - 1, r - 1, start + m * cnt); used[i] = false; cnt++; } } } void make_facts(int n) { facts = vvi(n + 1, vi(n + 1)); Loop(i, n + 1) { facts[i][0] = 1; Loop(j, i) { facts[i][j + 1] = facts[i][j] * (i - j); } } } public: vector> get_partial_permutation(const vector &a, int r) { n = int(a.size()); if (n < r) return {}; used = vector(n, false); make_facts(n); result = vector>(facts[n][r]); core_func(a, n, r, 0); return result; } }; int solve(vi a) { Foreach(ary, perms) { bool judge = true; Loop(i, 4) { if (!mx[a[ary[i]]][a[ary[(i + 1) & 0b11]]]) judge = false; } if (mx[a[ary[0]]][a[ary[2]]] || mx[a[ary[1]]][a[ary[3]]]) { judge = false; } if (judge) return 1; } return 0; } int main() { cin >> n >> m; mx = vvi(n, vi(n)); Loop(i, m) { int s, t; cin >> s >> t; mx[s][t] = 1; mx[t][s] = 1; } int ans = 0; Partial_Permutation pp; perms = pp.get_partial_permutation({ 0,1,2,3 }, 4); Loop(i0, n) { Loop(i1, n) { if (i1 <= i0) continue; Loop(i2, n) { if (i2 <= i1) continue; Loop(i3, n) { if (i3 <= i2) continue; ans += solve({ i0,i1,i2,i3 }); } } } } cout << ans << endl; }