// TLE解,O(N^2) #include using namespace std; #define all(x) (x).begin(),(x).end() #define rep(i, n) for (int i = 0; i < (n); i++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define endl "\n" typedef long long ll; typedef pair pii; typedef pair pll; template ostream &operator<<(ostream &os, const vector &vec) {os << "["; for (const auto &v : vec) {os << v << ","; } os << "]"; return os;} template ostream &operator<<(ostream &os, const pair &p) {os << "(" << p.first << ", " << p.second << ")"; return os;} const int mod = 1e9 + 7; ll mod_pow(ll x, ll n, ll mod) { ll res = 1; while(n > 0) { if(n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } ll inv(ll x) { return mod_pow(x, mod - 2, mod); } ll f(ll x, ll y) { return (((x + y) % mod) * mod_pow(x, y, mod)) % mod; } // (x + y)x^y < (s + t)s^t // log(x + y) + ylog(x) < log(s + t) + tlog(s) double g(ll x, ll y) { return log(x + y) + y * log(x); } void solve() { int N; cin >> N; vector A(N); for (int i = 0; i < N; i++) { cin >> A[i]; A[i] %= mod; } //sort(all(A)); // TLE. ll prod = 1; int ii = 0, jj = 1; double mi = g(A[0], A[1]); for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { prod *= f(A[i], A[j]); if (mi > g(A[i], A[j])) { mi = g(A[i], A[j]); ii = i, jj = j; } } } cout << (prod * inv(f(A[ii], A[jj]))) % mod << endl; } int main() { #ifdef LOCAL_ENV cin.exceptions(ios::failbit); #endif cin.tie(0); ios::sync_with_stdio(false); cout.setf(ios::fixed); cout.precision(16); solve(); }