#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f; const int MOD = 1'000'000'007; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; } template struct ModInt { static const int kMod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; } ModInt(signed long long sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= kMod) x -= kMod; return *this; } ModInt &operator-=(ModInt that) { if ((x += kMod - that.x) >= kMod) x -= kMod; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % kMod; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = kMod, u = 1, v = 0; while (b) { signed t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if (u < 0) u += kMod; ModInt res; res.x = (unsigned)u; return res; } }; template ostream &operator << (ostream &os, const ModInt &m) { return os << m.x; } template istream &operator >> (istream &is, ModInt &m) { signed long long s; is >> s; m = ModInt(s); return is; }; using mint = ModInt<1000000007>; mint pow(mint a, unsigned long long k) { mint r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; } vector fact, factinv; void precomputeFactorial(int N) { N = min(N, mint::kMod - 1); fact.resize(N + 1); factinv.resize(N + 1); fact[0] = 1; rep(i, 1, N + 1) fact[i] = fact[i - 1] * i; factinv[N] = fact[N].inverse(); for (int i = N; i >= 1; i--) factinv[i - 1] = factinv[i] * i; } mint combi(int n, int r) { if (n >= mint::kMod) return combi(n % mint::kMod, r % mint::kMod) * combi(n / mint::kMod, r / mint::kMod); return r > n ? 0 : fact[n] * factinv[n - r] * factinv[r]; } using ll = mint; struct LazySegmentTree { private: int n; vector node, lazy; public: LazySegmentTree(vector v) { int sz = (int)v.size(); n = 1; while (n < sz) n *= 2; node.resize(2 * n - 1); lazy.resize(2 * n - 1, 0); for (int i = 0; i < sz; i++) node[i + n - 1] = v[i]; for (int i = n - 2; i >= 0; i--) node[i] = node[i * 2 + 1] + node[i * 2 + 2]; } void eval(int k, int l, int r) { if (lazy[k].get() != 0) { node[k] += lazy[k]; if (r - l > 1) { lazy[2 * k + 1] += lazy[k] / 2; lazy[2 * k + 2] += lazy[k] / 2; } lazy[k] = 0; } } void add(int a, int b, ll x, int k = 0, int l = 0, int r = -1) { if (r < 0) r = n; eval(k, l, r); if (b <= l || r <= a) return; if (a <= l && r <= b) { lazy[k] += x * (r - l); eval(k, l, r); } else { add(a, b, x, 2 * k + 1, l, (l + r) / 2); add(a, b, x, 2 * k + 2, (l + r) / 2, r); node[k] = node[2 * k + 1] + node[2 * k + 2]; } } ll getsum(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0) r = n; eval(k, l, r); if (b <= l || r <= a) return 0; if (a <= l && r <= b) return node[k]; ll vl = getsum(a, b, 2 * k + 1, l, (l + r) / 2); ll vr = getsum(a, b, 2 * k + 2, (l + r) / 2, r); return vl + vr; } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int N, M, K; cin >> N >> M >> K; vector L(M), R(M); rep(i, 0, M) { cin >> L[i] >> R[i]; L[i], R[i]; L[i]--; } vector v(N, 0); v[0] = 1; LazySegmentTree lst(v); LazySegmentTree lst2(lst); rep(k, 0, K) { lst = lst2; lst2 = LazySegmentTree(vector(N, 0)); rep(i, 0, M) { ll sum = lst.getsum(L[i], R[i]); dump(lst2.getsum(0, N)); dump(sum); lst2.add(L[i], R[i], sum); } } cout << lst2.getsum(N - 1, N) << endl; return 0; }