#include using namespace std; using lint = long long; template using V = vector; template using VV = V< V >; using R = __float128; constexpr R pi = acos(-1.0L); using C = complex; C& operator*=(C& l, const C& r) { return l = {real(l) * real(r) - imag(l) * imag(r), real(l) * imag(r) + imag(l) * real(r)}; } void fft(V& a, bool inv = false) { int n = a.size(); int j = 0; for (int i = 1; i < n; ++i) { int k = n >> 1; while (j >= k) j -= k, k >>= 1; j += k; if (i < j) swap(a[i], a[j]); } for (int k = 1; k < n; k <<= 1) { C dt = polar(1, (inv ? -pi : pi) / k); for (int i0 = 0; i0 < n; i0 += k << 1) { C t = 1; for (int i = i0; i < i0 + k; ++i) { j = i + k; a[j] *= t, t *= dt; tie(a[i], a[j]) = make_pair(a[i] + a[j], a[i] - a[j]); } } } } constexpr int mod = 1e9 + 7; template void multiply(V& a, const V& b) { assert(!a.empty() and !b.empty()); int n = 1 << __lg(2 * (a.size() + b.size() - 1) - 1); V c(n); for (int i = 0; i < n; ++i) { if (i < (int) a.size()) c[i].real(a[i]); if (i < (int) b.size()) c[i].imag(b[i]); } fft(c); for (int i = 0; i <= n / 2; ++i) { c[i] *= c[i]; if (i & n / 2 - 1) c[n - i] *= c[n - i]; c[i] = C(0, -0.25) * (c[i] - conj(c[n - i & n - 1])); if (i & n / 2 - 1) c[n - i] = conj(c[i]); } fft(c, true); a.resize(a.size() + b.size() - 1); for (int i = 0; i < (int) a.size(); ++i) { a[i] = real(c[i]) / n + 0.5; a[i] %= mod; } } template struct Polynomial { using P = Polynomial; V c; Polynomial(int n = 0) : c(n) {} void shrink() { while (!c.empty() and !c.back()) c.pop_back(); } int size() const { return c.size(); } T& operator[](int i) { return c[i]; } const T& operator[](int i) const { return c[i]; } P operator*(const P& r) const { return P(*this) *= r; } P operator*(const T& r) const { return P(*this) *= r; } P operator/(const P& r) const { return P(*this) /= r; } P operator+(const P& r) const { return P(*this) += r; } P operator-(const P& r) const { return P(*this) -= r; } P& operator*=(const T& r) { for (int i = 0; i < size(); ++i) c[i] *= r; shrink(); return *this; } P& operator*=(const P& r) { multiply(c, r.c), shrink(); return *this; } P& operator/=(const P& r) { return *this *= r.inverse(); } P& operator+=(const P& r) { if (r.size() > size()) c.resize(r.size()); for (int i = 0; i < r.size(); ++i) c[i] += r[i]; shrink(); return *this; } P& operator-=(const P& r) { if (r.size() > size()) c.resize(r.size()); for (int i = 0; i < r.size(); ++i) c[i] -= r[i]; shrink(); return *this; } P inverse(int n) const { assert(!c.empty() and c[0]); if (n == 1) { P res(1); res[0] = 1 / c[0]; return res; } P inv = inverse(n + 1 >> 1); P res = inv * (T) 2 - *this * inv * inv; res.c.resize(n); return res; } }; using P = Polynomial<__int128>; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int k, n; cin >> k >> n; P f(1e5 + 1); f[0] = 1; for (int i = 0; i < n; ++i) { int x; cin >> x; f[x] = mod - 1; } f.shrink(); cout << (int) f.inverse(k + 1)[k] << '\n'; }