/* x -> x (x + 4) = (x + 2)^2 - 4 x + 2 -> (x + 2)^2 - 2 z[0] = 4, z[n + 1] = z[n]^2 - 2 z[n] = a^(2^n) + b^(2^n) a + b = 4, a b = 1 a, b = 2 \pm sqrt(3) T^2 - 4 T + 1 = 0 (P / 3) = +1 if P == 1 (mod 3) (P / 3) = -1 if P == 2 (mod 3) (3 / P) = +1 if P == 1, 11 (mod 12) (3 / P) = -1 if P == 5, 7 (mod 12) (0) P = 3 z[n] = 2 2^(2^n) = 2 if n >= 1 (+1) P == 1, 11 (mod 12) a^*: period | P - 1 (-1) P == 5, 7 (mod 12) b = a^P (Frobenius aut.) a^(P+1) = 1 a^*: period | 2 (P + 1) */ import std.conv, std.functional, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.range, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } long power(long a, long e, long m) { long x = a % m, y = 1 % m; for (; e; e >>= 1) { if (e & 1) { y = (y * x) % m; } x = (x * x) % m; } return y; } void main() { try { for (; ; ) { const N = readLong(); const P = readLong(); long ans; if (P == 3) { ans = (N == 0) ? 1 : 2; } else { // T^2 - 4 T + 1 long[] mul(long[] a, long[] b) { return [(a[0] * b[0] - a[1] * b[1]) % P, (a[0] * b[1] + a[1] * b[0] + 4 * a[1] * b[1]) % P]; } long n = power(2, N, (P % 12 == 1 || P % 12 == 11) ? (P - 1) : (2 * (P + 1))); long[] x = [0, 1], y = [1, 0]; for (long e = n; e; e >>= 1) { if (e & 1) { y = mul(y, x); } x = mul(x, x); } debug { writefln("T^%s == %s + %s T (mod T^2 - 4 T + 1)", n, y[0], y[1]); } ans = (2 * y[0] + 4 * y[1]) % P; } ans -= 2; ans = (ans % P + P) % P; writeln(ans); } } catch (EOFException e) { } }