#include #include #include #include #include // https://yukicoder.me/problems/no/619 template constexpr T popCount(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : (T)__builtin_popcountll(u); #else unsigned long long v = static_cast(u); return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast(v * 0x0101010101010101ULL >> 56 & 0x7f); #endif } template constexpr T log2p1(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : T(64 - __builtin_clzll(u)); #else unsigned long long v = static_cast(u); return v = static_cast(v), v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), popCount(v); #endif } template constexpr T clog(const T v) { return v == 0 ? T(0) : log2p1(v - 1); } template constexpr T msbp1(const T v) { return log2p1(v); } template constexpr T lsbp1(const T v) { #ifdef __has_builtin return __builtin_ffsll(v); #else return v == 0 ? T(0) : popCount((v & (-v)) - T(1)) + T(1); #endif } template constexpr bool ispow2(const T v) { return popCount(v) == 1; } template constexpr T ceil2(const T v) { return v == 0 ? T(1) : T(1) << log2p1(v - 1); } template constexpr T floor2(const T v) { return v == 0 ? T(0) : T(1) << (log2p1(v) - 1); } //!===================================================================!// //! .d88888b d888888P !// //! 88. "' 88 !// //! 'Y88888b. .d8888b. .d8888b. 88 88d888b. .d8888b. .d8888b. !// //! '8b 88ooood8 88' '88 88 88' '88 88ooood8 88ooood8 !// //! d8' .8P 88. ... 88. .88 88 88 88. ... 88. ... !// //! Y88888P '88888P' '8888P88 dP dP '88888P' '88888P' !// //! .88 !// //! d8888P !// //!===================================================================!// template class SegTree { public: using T = typename ValMonoid::T; SegTree(const std::size_t N, const T initial = ValMonoid::id()) : size(N), half(ceil2(size)), val(half << 1, ValMonoid::id()) { if (initial != ValMonoid::id()) { std::fill(val.begin() + half, val.end(), initial); for (std::size_t i = half - 1; i >= 1; i--) { up(i); } } } template SegTree(const InIt first, const InIt last) : size(std::distance(first, last)), half(ceil2(size)), val(half << 1, ValMonoid::id()) { std::copy(first, last, val.begin() + half); for (std::size_t i = half - 1; i >= 1; i--) { up(i); } } T get(const std::size_t a) const { return assert(a < size), val[a + half]; } void set(std::size_t a, const T& v) { assert(a < size); val[a += half] = v; while (a >>= 1) { up(a); } } T fold(std::size_t L, std::size_t R) const { assert(L < R), assert(R <= size); T accl = ValMonoid::id(), accr = ValMonoid::id(); for (L += half, R += half; L < R; L >>= 1, R >>= 1) { if (L & 1) { accl = acc(accl, val[L++]); } if (R & 1) { accr = acc(val[--R], accr); } } return acc(accl, accr); } friend std::ostream& operator<<(std::ostream& os, const SegTree& seg) { os << "["; for (std::size_t i = seg.half; i < seg.half + seg.size; i++) { os << seg.val[i] << (i + 1 == seg.half + seg.size ? "" : ","); } return (os << "]\n"); } private: void up(const std::size_t i) { val[i] = acc(val[i << 1], val[i << 1 | 1]); } const std::size_t size, half; std::vector val; const ValMonoid acc{}; }; //!=================================================================================!// //! .d888888 oo dP dP dP oo !// //! d8' 88 88 88 88 !// //! 88aaaaa88a 88d888b. dP d8888P 88d888b. 88d8b.d8b. .d8888b. d8888P dP .d8888b. !// //! 88 88 88' '88 88 88 88' '88 88''88''88 88ooood8 88 88 88' '"" !// //! 88 88 88 88 88 88 88 88 88 88 88. ... 88 88 88. ... !// //! 88 88 dP dP dP dP dP dP dP dP '88888P' dP dP '88888P' !// //!=================================================================================!// template struct ArithmeticOps { struct T { T() : has_p(false), L{1}, M{0}, R{0} {} T(const X& L, const X& M, const X& R) : has_p(true), L{L}, M{M}, R{R} {} T(const bool b, const X& V) : has_p{b}, L{has_p ? X{1} : V}, M{0}, R{has_p ? V : X{0}} {} T(const bool b, const X& L, const X& M, const X& R) : has_p{b}, L{L}, M{M}, R{R} {} bool has_p; X L, M, R; friend std::ostream& operator<<(std::ostream& os, const T& t) { return t.has_p ? (os << "*" << t.L << "+" << t.M << "+" << t.R) : (os << "*" << t.L); } }; T operator()(const T& a, const T& b) const { return a.has_p ? b.has_p ? T{a.L, a.M + a.R * b.L + b.M, b.R} : T{a.L, a.M, a.R * b.L} : b.has_p ? T{a.L * b.L, b.M, b.R} : T{false, a.L * b.L}; } static T id() { return T{false, X{1}}; } }; //!===============================================================!// //! 88888888b dP .88888. a88888b. 888888ba !// //! 88 88 d8' '88 d8' '88 88 '8b !// //! a88aaaa dP. .dP d8888P 88 88 88 88 !// //! 88 '8bd8' 88 88 YP88 88 88 88 !// //! 88 .d88b. 88 Y8. .88 Y8. .88 88 .8P !// //! 88888888P dP' 'dP dP '88888' Y88888P' 8888888P !// //!===============================================================!// template constexpr std::pair extgcd(const T a, const T b) { if (b == 0) { return std::pair{1, 0}; } const auto p = extgcd(b, a % b); return {p.second, p.first - p.second * (a / b)}; } template constexpr T inverse(const T a, const T mod) { return (mod + extgcd((mod + a % mod) % mod, mod).first % mod) % mod; } using uint = unsigned int; using ll = long long; using ull = unsigned long long; //!========================================================!// //! 8888ba.88ba dP dP dP !// //! 88 '8b '8b 88 88 88 !// //! 88 88 88 .d8888b. .d888b88 88 88d888b. d8888P !// //! 88 88 88 88' '88 88' '88 88 88' '88 88 !// //! 88 88 88 88. .88 88. .88 88 88 88 88 !// //! dP dP dP '88888P' '88888P8 dP dP dP dP !// //!========================================================!// template class ModInt { private: uint v; static uint norm(const uint& x) { return x < mod ? x : x - mod; } static ModInt make(const uint& x) { ModInt m; return m.v = x, m; } static ModInt power(ModInt x, ll n) { ModInt ans = 1; for (; n; n >>= 1, x *= x) { if (n & 1) { ans *= x; } } return ans; } static ModInt inv(const ModInt& x) { return ModInt{inverse((ll)x.v, (ll)mod)}; } public: ModInt() : v{0} {} ModInt(const ll val) : v{norm(uint(val % (ll)mod + (ll)mod))} {} ModInt(const ModInt& n) : v{n()} {} explicit operator bool() const { return v != 0; } ModInt& operator=(const ModInt& n) { return v = n(), (*this); } ModInt& operator=(const ll val) { return v = norm(uint(val % (ll)mod + (ll)mod)), (*this); } ModInt operator+() const { return *this; } ModInt operator-() const { return make(norm(mod - v)); } ModInt operator+(const ModInt& val) const { return make(norm(v + val())); } ModInt operator-(const ModInt& val) const { return make(norm(v + mod - val())); } ModInt operator*(const ModInt& val) const { return make((uint)((ll)v * val() % (ll)mod)); } ModInt operator/(const ModInt& val) const { return *this * inv(val()); } ModInt& operator+=(const ModInt& val) { return *this = *this + val; } ModInt& operator-=(const ModInt& val) { return *this = *this - val; } ModInt& operator*=(const ModInt& val) { return *this = *this * val; } ModInt& operator/=(const ModInt& val) { return *this = *this / val; } ModInt operator+(const ll val) const { return ModInt{v + val}; } ModInt operator-(const ll val) const { return ModInt{v - val}; } ModInt operator*(const ll val) const { return ModInt{(ll)v * (val % mod)}; } ModInt operator/(const ll val) const { return ModInt{(ll)v * inv(val)}; } template ModInt operator^(const I n) const { return power(v, n); } ModInt& operator+=(const ll val) { return *this = *this + val; } ModInt& operator-=(const ll val) { return *this = *this - val; } ModInt& operator*=(const ll val) { return *this = *this * val; } ModInt& operator/=(const ll val) { return *this = *this / val; } template ModInt& operator^=(const I n) { return (*this) = ((*this) ^ n); } bool operator==(const ModInt& val) const { return v == val.v; } bool operator!=(const ModInt& val) const { return not(*this == val); } bool operator==(const ll val) const { return v == norm(uint((ll)mod + val % (ll)mod)); } bool operator!=(const ll val) const { return not(*this == val); } uint operator()() const { return v; } }; template inline ModInt operator+(const ll val, const ModInt& n) { return n + val; } template inline ModInt operator-(const ll val, const ModInt& n) { return ModInt{val - (ll)n()}; } template inline ModInt operator*(const ll val, const ModInt& n) { return n * val; } template inline ModInt operator/(const ll val, const ModInt& n) { return ModInt(val) / n; } template inline bool operator==(const ll val, const ModInt& n) { return n == val; } template inline bool operator!=(const ll val, const ModInt& n) { return not(val == n); } template inline std::istream& operator>>(std::istream& is, ModInt& n) { uint v; return is >> v, n = v, is; } template std::ostream& operator<<(std::ostream& os, const ModInt& n) { return (os << n()); } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); constexpr uint MOD = 1000000007; using mint = ModInt; std::size_t N; std::cin >> N; const std::size_t M = (N + 1) / 2; std::vector A(M); std::string S(M, '*'); for (std::size_t i = 0; i < N; i++) { if (i % 2 == 0) { std::cin >> A[i / 2]; } else { std::cin >> S[i / 2 + 1]; } } using T = ArithmeticOps::T; std::vector V(M); for (std::size_t i = 0; i < M; i++) { V[i] = T{S[i] == '+', A[i]}; } SegTree> seg(V.begin(), V.end()); std::size_t Q; std::cin >> Q; for (std::size_t q = 0; q < Q; q++) { char t; std::size_t x, y; std::cin >> t >> x >> y; if (t == '!') { bool op = x % 2 == 0; x /= 2, y /= 2; if (op) { std::swap(S[x], S[y]); } else { std::swap(A[x], A[y]); } seg.set(x, T{S[x] == '+', A[x]}), seg.set(y, T{S[y] == '+', A[y]}); } else { x /= 2, y /= 2; const auto ans = seg.fold(x, y + 1); std::cout << (S[x] == '+' ? ans.M + ans.R : ans.L + ans.M + ans.R) << "\n"; } } return 0; }