#include #define FOR(v, a, b) for(int v = (a); v < (b); ++v) #define FORE(v, a, b) for(int v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(int v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define LLI long long int #define fst first #define snd second #ifdef DEBUG #include #else #define dump(x) ((void)0) #endif #define gcd __gcd using namespace std; template constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost< istream& operator>>(istream &is, vector &v){for(auto &a : v) is >> a; return is;} template istream& operator>>(istream &is, pair &p){is >> p.first >> p.second; return is;} template bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template bool chmax(T &a, const U &b){return (a void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} template class Dinic{ private: vector>> graph; int size, s, t; vector> cap; vector level; bool buildLevel(){ fill(ALL(level), 0); level[s] = 1; deque deq = {s}; while(!deq.empty()){ int cur = deq.front(); deq.pop_front(); REP(i,size) if(level[i]==0 && cap[cur][i]>0){ level[i] = level[cur] + 1; deq.push_back(i); } } return level[t] != 0; } void dfs(vector &path, T &flow){ if(path.empty()) return; int cur = path.back(); if(cur == t){ T f = INF; FOR(i,1,(int)path.size()) f = min(f, cap[path[i-1]][path[i]]); FOR(i,1,(int)path.size()){ cap[path[i-1]][path[i]] -= f; cap[path[i]][path[i-1]] += f; } flow += f; }else{ REP(i,size){ if(cap[cur][i]>0 && level[i]>level[cur]){ path.push_back(i); dfs(path, flow); path.pop_back(); } } } } T augment(){ T f = 0; vector path = {s}; dfs(path, f); return f; } T loop(){ T f = 0; while(buildLevel()) f += augment(); return f; } public: Dinic(vector>> &_graph): graph(_graph), size(graph.size()) {} Dinic(int size): graph(size), size(size){} void add_edge(int from, int to, const T &cap){ graph[from].push_back({to, cap}); } T max_flow(int _s, int _t){ cap = vector>(size, vector(size, 0)); level = vector(size, 0); REP(i,size) for(auto &p : graph[i]){ int j = p.first; T d = p.second; cap[i][j] += d; } s = _s; t = _t; return loop(); } }; const LLI inf = 1LL<<50; int main(){ cin.tie(0); ios::sync_with_stdio(false); int N,M,d; while(cin >> N >> M >> d){ vector u(M), v(M), p(M), q(M), w(M); vector> ps(N), qs(N); REP(i,M){ cin >> u[i] >> v[i] >> p[i] >> q[i] >> w[i]; --u[i]; --v[i]; ps[u[i]][p[i]] = 0; qs[v[i]][q[i]] = 0; } int s = 0; int t = 1; int k = 2; REP(i,N){ ITR(it,ps[i]){ it->snd = k; ++k; } ITR(it,qs[i]){ it->snd = k; ++k; } } Dinic dinic(k); REP(i,M){ dinic.add_edge(ps[u[i]][p[i]], qs[v[i]][q[i]], w[i]); } REP(i,N){ { vector temp; for(auto &kv : ps[i]) temp.push_back(kv.snd); REP(i,(int)temp.size()-1) dinic.add_edge(temp[i], temp[i+1], inf); } { vector temp; for(auto &kv : qs[i]) temp.push_back(kv.snd); REP(i,(int)temp.size()-1) dinic.add_edge(temp[i], temp[i+1], inf); } for(auto &kv : qs[i]){ auto it = ps[i].lower_bound(kv.fst+d); if(it == ps[i].end()) break; dinic.add_edge(kv.snd, it->snd, inf); } } ITR(it, ps[0]){ dinic.add_edge(s, it->snd, inf); } ITR(it, qs[N-1]){ dinic.add_edge(it->snd, t, inf); } LLI ans = dinic.max_flow(s,t); cout << ans << endl; } return 0; }