#include #include #include #include #include typedef int32_t flow_type; const flow_type flow_inf = 40 * 100; typedef struct flow_edge { int32_t vertex; int32_t next; flow_type capacity; } flow_edge; typedef struct maxFlowGraph { flow_edge *edge; int32_t *start; int32_t vertex_num; int32_t pointer; int32_t edge_length; } graph; graph* new_graph (const int32_t vertex_num) { graph *g = (graph *) calloc (1, sizeof (graph)); g->vertex_num = vertex_num; const int32_t initial_length = 4; g->edge = (flow_edge *) calloc (initial_length, sizeof (flow_edge)); g->start = (int32_t *) calloc (vertex_num, sizeof (int32_t)); g->pointer = 0; g->edge_length = initial_length; for (int32_t i = 0; i < vertex_num; ++i) { g->start[i] = -1; } return g; } void free_graph (graph * const g) { free (g->edge); free (g->start); free (g); } void clear_graph (graph * const g) { g->pointer = 0; memset (g->start, -1, sizeof (int32_t) * g->vertex_num); } void add_edge (graph * const g, const int32_t from, const int32_t to, const flow_type capa) { if (g->pointer == g->edge_length) { g->edge_length *= 2; g->edge = (flow_edge *) realloc (g->edge, sizeof (flow_edge) * g->edge_length); } const int32_t p = g->pointer; g->edge[p] = (flow_edge) {to, g->start[from], capa}; g->start[from] = p; g->edge[p + 1] = (flow_edge) {from, g->start[to], 0}; g->start[to] = p + 1; g->pointer += 2; } void add_edge_undirected (graph * const g, const int32_t u, const int32_t v, const flow_type capa) { if (g->pointer == g->edge_length) { g->edge_length *= 2; g->edge = (flow_edge *) realloc (g->edge, sizeof (flow_edge) * g->edge_length); } const int32_t p = g->pointer; g->edge[p] = (flow_edge) {v, g->start[u], capa}; g->start[u] = p; g->edge[p + 1] = (flow_edge) {u, g->start[v], capa}; g->start[v] = p + 1; g->pointer += 2; } flow_type dinic_dfs (const int32_t v, const graph * const g, const int32_t dst, const int32_t * const level, int32_t * const iter, flow_type e) { if (v == dst) return e; flow_type sum = 0; for (int32_t p = iter[v]; p != -1; p = g->edge[p].next, iter[v] = p) { const int32_t u = g->edge[p].vertex; const flow_type capa = g->edge[p].capacity; if (level[u] <= level[v] || capa <= 0) continue; const flow_type f = dinic_dfs (u, g, dst, level, iter, capa < e ? capa : e); if (f > 0) { g->edge[p].capacity -= f; g->edge[p ^ 1].capacity += f; sum += f; e -= f; if (e <= 0) return sum; } } return sum; } flow_type dinic (const graph * const g, const int32_t src, const int32_t dst) { const int32_t vertex_num = g->vertex_num; int32_t * const level = (int32_t *) calloc (vertex_num, sizeof (int32_t)); int32_t * const queue = (int32_t *) calloc (vertex_num, sizeof (int32_t)); int32_t * const iter = (int32_t *) calloc (vertex_num, sizeof (int32_t)); flow_type flow = 0; while (1) { memset (level, 0, sizeof (int32_t) * vertex_num); int32_t front = 0; int32_t last = 0; level[dst] = vertex_num; queue[last++] = dst; while (front < last && level[src] == 0) { const int32_t v = queue[front++]; for (int32_t p = g->start[v]; p!=-1; p = g->edge[p].next) { const int32_t u = g->edge[p].vertex; if (g->edge[p ^ 1].capacity > 0 && level[u] == 0) { level[u] = level[v] - 1; queue[last++] = u; } } } if (level[src] == 0) break; memcpy (iter, g->start, sizeof (int32_t) * vertex_num); while (1) { flow_type f = dinic_dfs (src, g, dst, level, iter, flow_inf); if (f <= 0) break; flow += f; } } free (level); free (queue); free (iter); return flow; } typedef int32_t i32; void run (void) { i32 n; scanf ("%" SCNi32, &n); graph *g = new_graph (2 * n + 2); const i32 src = 2 * n; const i32 dst = src + 1; i32 sum = 0; for (i32 i = 0; i < n; ++i) { i32 b, c; scanf ("%" SCNi32 "%" SCNi32, &b, &c); sum += b + c; add_edge (g, src, i, b); add_edge (g, i, i + n, b + c); add_edge (g, i + n, dst, c); } i32 m; scanf ("%" SCNi32, &m); while (m--) { i32 d, e; scanf ("%" SCNi32 "%" SCNi32, &d, &e); add_edge (g, d + n, e, flow_inf); } i32 ans = sum - dinic (g, src, dst); printf ("%" PRIi32 "\n", ans); } int main (void) { run(); return 0; }