using System; using System.Collections.Generic; using System.Globalization; using System.IO; using System.Linq; partial class Solver { public void Run() { var N = ni(); var M = ni(); int mod = 1000000007; long ans = 0; if (N == 1) ans = 1; else { var C = new Binomial(M + 1, mod); var pattern = new Func(x => { if (x < 0) x = -x; if ((M + x) % 2 == 1) return 0; var a = (M + x) / 2; return C[M, a]; } ); for (int i = 0; i - 1 <= M; i += 2 * N) { var a = i; var b = i - 1; if (a >= 0 && a <= M) ans += pattern(a); if (b >= 0 && b <= M) ans += pattern(b); ans %= mod; } for (int i = 0; i >= -M; i -= 2 * N) { var a = i; var b = i - 1; if (a < 0 && -M <= a) ans += pattern(a); if (b < 0 && -M <= b) ans += pattern(b); ans %= mod; } } cout.WriteLine(ans); } } public class Binomial { private readonly long[] factorial; private readonly long[] inverseFactorial; private readonly long[] inverse; private readonly int mod; public Binomial(int size, int primeMod) { size++; this.factorial = new long[size]; this.inverseFactorial = new long[size]; this.inverse = new long[size]; this.mod = primeMod; Setup(size); } private void Setup(int size) { factorial[0] = factorial[1] = 1; inverseFactorial[0] = inverseFactorial[1] = 1; inverse[1] = 1; for (int i = 2; i < size; i++) { factorial[i] = factorial[i - 1] * i % mod; inverse[i] = (mod - (mod / i) * inverse[mod % i] % mod); inverseFactorial[i] = inverseFactorial[i - 1] * inverse[i] % mod; } } private long Get(int s, int t) { if (s < 0 || t < 0 || s < t) return 0; if (t == 0 || s == t) return 1; if (s >= mod) return Get(s % mod, t % mod) * Get(s / mod, t / mod) % mod; // Lucas' theorem return factorial[s] * inverseFactorial[t] % mod * inverseFactorial[s - t] % mod; } public long this[int s, int t] { get { return Get(s, t); } } } // PREWRITEN CODE BEGINS FROM HERE partial class Solver : Scanner { public static void Main(string[] args) { new Solver(Console.In, Console.Out).Run(); } TextReader cin; TextWriter cout; public Solver(TextReader reader, TextWriter writer) : base(reader) { this.cin = reader; this.cout = writer; } public Solver(string input, TextWriter writer) : this(new StringReader(input), writer) { } public int ni() { return NextInt(); } public int[] ni(int n) { return NextIntArray(n); } public long nl() { return NextLong(); } public long[] nl(int n) { return NextLongArray(n); } public double nd() { return NextDouble(); } public string ns() { return Next(); } } public class Scanner { private TextReader Reader; private Queue TokenQueue = new Queue(); private CultureInfo ci = CultureInfo.InvariantCulture; public Scanner() : this(Console.In) { } public Scanner(TextReader reader) { this.Reader = reader; } public int NextInt() { return Int32.Parse(Next(), ci); } public long NextLong() { return Int64.Parse(Next(), ci); } public double NextDouble() { return double.Parse(Next(), ci); } public string[] NextArray(int size) { var array = new string[size]; for (int i = 0; i < size; i++) array[i] = Next(); return array; } public int[] NextIntArray(int size) { var array = new int[size]; for (int i = 0; i < size; i++) array[i] = NextInt(); return array; } public long[] NextLongArray(int size) { var array = new long[size]; for (int i = 0; i < size; i++) array[i] = NextLong(); return array; } public String Next() { if (TokenQueue.Count == 0) { if (!StockTokens()) throw new InvalidOperationException(); } return TokenQueue.Dequeue(); } public bool HasNext() { if (TokenQueue.Count > 0) return true; return StockTokens(); } private bool StockTokens() { while (true) { var line = Reader.ReadLine(); if (line == null) return false; var tokens = line.Trim().Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries); if (tokens.Length == 0) continue; foreach (var token in tokens) TokenQueue.Enqueue(token); return true; } } }