from functools import reduce def gcd(a, b): while b: a, b = b, a%b return a def lcm(a, b): return a * b // gcd (a, b) def extended_euclid(a, b): x1, y1, m = 1, 0, a x2, y2, n = 0, 1, b while m % n != 0: q, r = divmod(m, n) x1, y1, m, x2, y2, n = x2, y2, n, x1 - q * x2, y1 - q * y2, r return (x2, y2, n) def chinese_reminder(A, M): ''' solve x \equiv a_1 (mod m_1), ... x \equiv a_k (mod m_k) by applying the Chinese reminder theorem Input: A = [a_1, ..., a_k]: a list M = [m_1, ..., m_k]: a list. Output: Returns the tuple (x, mod) of the solution x and the modulus mod = m_1 ... m_k if exists else (0, -1). ''' # initialize x = 0 mod = 1 for a, m in zip(A, M): u, v, g = extended_euclid(mod, m) q, r = divmod(a - x, g) if r != 0: return (0, -1) x += q * mod * u mod *= m // g x %= mod return (x, mod) N = int(input()) MOD = 10**9 + 7 A = [] M = [] for _ in range(N): a, m = map(int, input().split()) A.append(a) M.append(m) x, m = chinese_reminder(A, M) if (x, m) == (0, -1): x = -1 elif x == 0 and m != -1: x = reduce(lcm, M) print(x % MOD)