import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } class Tree { Tree l, r, p; int size; int id; BinaryHeap!(Array!int) que; Tuple!(int, int) mx; this(int id) { l = r = p = null; size = 1; this.id = id; que = BinaryHeap!(Array!int)(); mx = tuple(-1, -1); } void update() { size = (l ? l.size : 0) + 1 + (r ? r.size : 0); mx = max(l ? l.mx : tuple(-1, -1), !que.empty ? tuple(que.front, id) : tuple(-1, -1), r ? r.mx : tuple(-1, -1)); } bool isRoot() const { return (!p || (p.l != this && p.r != this)); } void rotate() { if (p.l == this) { if (r) { r.p = p; } p.l = r; r = p; } else if (p.r == this) { if (l) { l.p = p; } p.r = l; l = p; } Tree pp = p.p; if (pp) { if (pp.l == p) pp.l = this; else if (pp.r == p) pp.r = this; } p.update(); p.p = this; p = pp; } void splay() { for (; !isRoot(); rotate()) { if (!p.isRoot()) ((p.l == this) == (p.p.l == p)) ? p.rotate() : rotate(); } update(); } // Make the path from v to the root solid // Return the node where it entered the last solid path Tree expose() { Tree u = this, v = null; for (; u; u = u.p) { u.splay(); u.r = v; u.update(); v = u; } splay(); return v; } // parent of this := u void link(Tree u) { expose(); u.expose(); p = u; u.r = this; u.update(); } // parent of this := null void cut() { expose(); l.p = null; l = null; update(); } // the root of the tree this belongs Tree root() { expose(); for (Tree u = this; ; u = u.l) if (!u.l) { u.splay(); return u; } } // LCA of this and u // Assume this.root == u.root Tree lca(Tree u) { expose(); return u.expose(); } // ([child of LCA, ..., this], [LCA, ..., u]) // Assume this.root == u.root /* import std.typecons : Tuple, tuple; Tuple!(int[], int[]) path(Tree u) { expose(); Tree v = u.expose(); splay(); v.splay(); auto pathT = (v == this) ? [] : ((l ? l.val : []) ~ [this.id]); auto pathU = [v.id] ~ (v.r ? v.r.val : []); return tuple(pathT, pathU); } */ Tuple!(int, int) path(Tree u) { expose(); Tree v = u.expose(); splay(); v.splay(); auto ret = tuple(-1, -1); if (v != this) { if (l) chmax(ret, l.mx); if (!que.empty) chmax(ret, tuple(que.front, id)); } if (!v.que.empty) chmax(ret, tuple(v.que.front, v.id)); if (v.r) chmax(ret, v.r.mx); return ret; } } void print(in Tree[] nodes) { import std.stdio : write, writeln; import std.string : format; string dfs(in Tree u) { return format("<%s%s(%s, %s, %s)%s>", u.l ? (dfs(u.l) ~ " ") : "", u.id, u.size, u.que, u.mx, u.r ? (" " ~ dfs(u.r)) : ""); } foreach (u; nodes) { if (u.isRoot()) { write("| "); if (u.p) write(u.p.id, " "); write("<- ", u.id, ": "); writeln(dfs(u)); } } } int root(int[] uf, int u) { return (uf[u] < 0) ? u : (uf[u] = uf.root(uf[u])); } bool connect(int[] uf, int u, int v) { u = uf.root(u); v = uf.root(v); if (u == v) return false; if (uf[u] > uf[v]) swap(u, v); uf[u] += uf[v]; uf[v] = u; return true; } int N, M, Q; int[] A, B; int[] X, U, W, S, T; int[][] graph; int[] par, dis, low; int zeit; void dfs(int u, int p) { par[u] = p; dis[u] = low[u] = zeit++; foreach (v; graph[u]) { if (v != p) { if (dis[v] == -1) { dfs(v, u); chmin(low[u], low[v]); } else { chmin(low[u], dis[v]); } } } } void main() { try { for (; ; ) { N = readInt(); M = readInt(); Q = readInt(); A = new int[M]; B = new int[M]; foreach (i; 0 .. M) { A[i] = readInt() - 1; B[i] = readInt() - 1; } X = new int[Q]; U = new int[Q]; W = new int[Q]; S = new int[Q]; T = new int[Q]; foreach (q; 0 .. Q) { X[q] = readInt(); switch (X[q]) { case 1: { U[q] = readInt() - 1; W[q] = readInt(); } break; case 2: { S[q] = readInt() - 1; T[q] = readInt() - 1; } break; default: assert(false); } } graph = new int[][N]; foreach (i; 0 .. M) { graph[A[i]] ~= B[i]; graph[B[i]] ~= A[i]; } par = new int[N]; dis = new int[N]; low = new int[N]; dis[] = -1; zeit = 0; dfs(0, -1); auto isBridge = new int[M]; foreach (i; 0 .. M) { int u = A[i], v = B[i]; if (dis[u] > dis[v]) { swap(u, v); } isBridge[i] = (u == par[v] && dis[v] <= low[v]); } debug { writeln("isBridge = ", isBridge); } auto uf = new int[N]; uf[] = -1; foreach (i; 0 .. M) { if (!isBridge[i]) { uf.connect(A[i], B[i]); } } auto nodes = new Tree[N]; foreach (u; 0 .. N) { if (uf[u] < 0) { nodes[u] = new Tree(u); } } foreach (i; 0 .. M) { if (isBridge[i]) { int u = A[i], v = B[i]; if (par[u] == v) { swap(u, v); } nodes[uf.root(v)].link(nodes[uf.root(u)]); } } foreach (q; 0 .. Q) { switch (X[q]) { case 1: { int u = uf.root(U[q]); nodes[u].que.insert(W[q]); nodes[u].mx = !nodes[u].que.empty ? tuple(nodes[u].que.front, u) : tuple(-1, -1); } break; case 2: { const res = nodes[uf.root(S[q])].path(nodes[uf.root(T[q])]); writeln(res[0]); if (res[1] != -1) { int u = res[1]; nodes[u].que.removeFront; nodes[u].mx = !nodes[u].que.empty ? tuple(nodes[u].que.front, u) : tuple(-1, -1); } } break; default: assert(false); } } } } catch (EOFException e) { } }