import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } int B; string D; int L; void normalize(int[] a) { foreach (i; 0 .. L + 10) { int q = a[i] / B, r = a[i] % B; if (r < 0) { --q; r += B; } a[i + 1] += q; a[i] = r; } } void main() { try { for (; ; ) { B = readInt(); D = readToken(); L = cast(int)(D.length); auto d = new int[L + 20]; foreach (i; 0 .. L) { d[i] = D[L - 1 - i] - '0'; } debug { writeln("d = ", d); } /* min n s.t. d <= Sum[1 <= k <= n] k (B - 1) B^(k-1) <=> (B - 1) d <= n B^(n+1) - (n + 1) B^n + 1 */ // d *= (B - 1) foreach_reverse (i; 0 .. L) { d[i + 1] += d[i]; d[i] *= -1; } d.normalize; debug { writeln("d = ", d); } int lo = 0, hi = L + 1; for (; lo + 1 < hi; ) { const mid = (lo + hi) / 2; auto e = new int[L + 20]; e[0] += 1; e[mid] -= (mid + 1); e[mid + 1] += mid; e.normalize; int s; foreach_reverse (i; 0 .. L + 10) { if (d[i] != e[i]) { s = sgn(d[i] - e[i]); break; } } ((s <= 0) ? hi : lo) = mid; } const n = hi; debug { writeln("n = ", n); } foreach (k; 1 .. n) { // d -= (B - 1) . k (B - 1) B^(k-1) d[k - 1] -= (B - 1) * k * (B - 1); } d.normalize; debug { writeln("d = ", d); } int rem; // f = d / (B - 1) auto f = new int[L + 20]; rem = 0; foreach_reverse (i; 0 .. L + 10) { rem = rem * B + d[i]; f[i] = rem / (B - 1); rem %= (B - 1); } assert(rem == 0); debug { writeln("f = ", f); } // f -= 1, g = d / n --f[0]; f.normalize; auto g = new int[L + 20]; rem = 0; foreach_reverse (i; 0 .. L + 10) { rem = rem * B + f[i]; g[i] = rem / n; rem %= n; } debug { writeln("g = ", g); writeln("rem = ", rem); } // rem-th (0-based) significant digit of B^(n-1) + g g[n - 1] += 1; const ans = g[n - 1 - rem]; writeln(ans); } } catch (EOFException e) { } }