#include #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #define sz(v) ((LLI)(v).size()) #ifdef DEBUG #include #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost< istream& operator>>(istream &is, vector &v){for(auto &a : v) is >> a; return is;} template istream& operator>>(istream &is, pair &p){is >> p.first >> p.second; return is;} template bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template bool chmax(T &a, const U &b){return (a void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} LLI power(LLI n, LLI p, LLI m){ LLI ret = 1; while(p>0){ if(p&1) (ret *= n) %= m; (n *= n) %= m; p /= 2; } return ret; } LLI mod_inv(LLI n, LLI p){return power(n,p-2,p);} template class Combination{ public: static vector facto; static vector ifacto; static void init(int N){ facto.assign(N+1, 1); ifacto.assign(N+1, 1); FORE(i,1,N){ (facto[i] = facto[i-1] * i) %= MOD; } ifacto[N] = mod_inv(facto[N],MOD); REV(i,N-1,0){ ifacto[i] = ifacto[i+1] * (i+1) % MOD; } } static LLI factorial(LLI i){ assert(i < facto.size()); return facto[i]; } static LLI factorial_inverse(LLI i){ assert(i < ifacto.size()); return ifacto[i]; } static LLI P(LLI n, LLI k); static LLI C(LLI n, LLI k); static LLI H(LLI n, LLI k); static LLI stirling_number(LLI n, LLI k); static LLI bell_number(LLI n, LLI k); }; template vector Combination::facto = vector(); template vector Combination::ifacto = vector(); template LLI Combination::H(LLI n, LLI k){ if(n == 0 and k == 0) return 1; return C(n+k-1, k); } template LLI Combination::C(LLI n, LLI k){ if(n < k or n < 0 or k < 0) return 0; return P(n,k) * factorial_inverse(k) % MOD; } template LLI Combination::P(LLI n, LLI k){ if(n < k or n < 0 or k < 0) return 0; return factorial(n) * factorial_inverse(n-k) % MOD; } const LLI mod = 1e9+7; int main(){ cin.tie(0); ios::sync_with_stdio(false); using C = Combination; C::init(2000000); int T; scanf("%d",&T); char c; int n,k; while(T--){ scanf(" %c(%d,%d)", &c, &n, &k); if(c == 'C'){ cout << C::C(n,k) << endl; }else if(c == 'P'){ cout << C::P(n,k) << endl; }else{ cout << C::H(n,k) << endl; } } return 0; }