#include using namespace std; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for(int i=(begin);i<(end);i++) #define REP(i, n) FOR(i,0,n) #define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--) #define IREP(i, n) IFOR(i,0,n) #define Sort(v) sort(v.begin(), v.end()) #define Reverse(v) reverse(v.begin(), v.end()) #define all(v) v.begin(),v.end() #define SZ(v) ((int)v.size()) #define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x)) #define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x)) #define Max(a, b) a = max(a, b) #define Min(a, b) a = min(a, b) #define bit(n) (1LL<<(n)) #define bit_exist(x, n) ((x >> n) & 1) #define debug(x) cout << #x << "=" << x << endl; #define vdebug(v) cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; #define mdebug(m) cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} #define pb push_back #define f first #define s second #define int long long #define INF 1000000000000000000 template istream &operator>>(istream &is, vector &v){ for (auto &x : v) is >> x; return is; } template ostream &operator<<(ostream &os, vector &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; } template void Out(T x) { cout << x << endl; } template void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); } using vec = vector; using mat = vector; using Pii = pair; using PiP = pair; using PPi = pair; using bools = vector; using pairs = vector; //int dx[4] = {1,0,-1,0}; //int dy[4] = {0,1,0,-1}; //char d[4] = {'D','R','U','L'}; const int mod = 1000000007; //const int mod = 998244353; #define Add(x, y) x = (x + (y)) % mod #define Mult(x, y) x = (x * (y)) % mod struct edge{int to, cost;}; class Graph { public: int N; vector> G; Graph(int N): N(N){ G = vector>(N, vector(0)); } void add_Directed_edge(int from, int to, int cost = 1){ G[from].push_back(edge({to, cost})); } void add_Undirected_edge(int v1, int v2, int cost = 1){ add_Directed_edge(v1, v2, cost); add_Directed_edge(v2, v1, cost); } vec dijkstra(int s, int t){ vec d(N); priority_queue, greater> que; fill(d.begin(), d.end(), INF); d[s] = 0; que.push(Pii(0, s)); while(!que.empty()){ Pii p = que.top(); que.pop(); int v = p.second; if(v == t) return d; if(d[v] < p.first) continue; REP(i, G[v].size()){ edge e = G[v][i]; if(d[e.to] > d[v] + e.cost){ d[e.to] = d[v] + e.cost; que.push(Pii(d[e.to], e.to)); } } } return d; } }; signed main(){ int N, M, P, Q, T; cin >> N >> M >> P >> Q >> T; P--; Q--; Graph G(N); int a, b, c; REP(i, M){ cin >> a >> b >> c; G.add_Undirected_edge(a - 1, b - 1, c); } vec d0 = G.dijkstra(0, -1); vec dP = G.dijkstra(P, -1); vec dQ = G.dijkstra(Q, -1); int ans = -1; REP(i, N){ if(2 * (d0[i] + max(dP[i], dQ[i])) <= T) Max(ans, T - 2 * max(dP[i], dQ[i])); } if(d0[P] + dP[Q] + d0[Q] <= T) ans = T; Out(ans); return 0; }