local mce, mfl, msq, mmi, mma = math.ceil, math.floor, math.sqrt, math.min, math.max local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if(allnums[i]) then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while(primepos <= prime_num and dv <= lim) do if(x % dv == 0) then local asdf = {} asdf.p = dv asdf.cnt = 1 x = x / dv while(x % dv == 0) do x = x / dv asdf.cnt = asdf.cnt + 1 end table.insert(tmp, asdf) lim = mce(msq(x)) end if(primepos == prime_num) then break end primepos = primepos + 1 dv = primes[primepos] end if(x ~= 1) then local asdf = {} asdf.p, asdf.cnt = x, 1 table.insert(tmp, asdf) end return tmp end local function getdivisor(divisorparts) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (1 + divisorparts[i].cnt) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p end end table.insert(t, ret) end table.sort(t) return t end local n, k, m = io.read("*n", "*n", "*n") local primes = getprimes(31623) local dvp = getdivisorparts(n, primes) for i = 1, #dvp do local c = dvp[i].cnt * k local p = dvp[i].p local r = 1 for j = 1, c do r = r * p if m < r then c = j break end end dvp[i].cnt = c end local dvs = getdivisor(dvp) local ret = 0 for i = 1, #dvs do if dvs[i] <= m then ret = ret + 1 else break end end print(ret)