#ifdef DEBUG_IS_VALID #define DEB 1 #define _LIBCPP_DEBUG 0 #else #define DEB 0 #define NDEBUG #endif #include using namespace std; #define ALL(g) (g).begin(),(g).end() #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define RREP(i, x, n) for(int i = x; i >= n; i--) #define rrep(i, n) RREP(i,n,0) #define pb push_back #pragma GCC optimize ("-O3") using namespace std; #define DUMPOUT cout #define dump(...) if(DEB) DUMPOUT<<" "<<#__VA_ARGS__<<" :["<<__LINE__<<":"<<__FUNCTION__<<"]"<ostream& operator << (ostream& os, pair p){cout << "(" << p.first << ", " << p.second << ")"; return os;} templateostream& operator << (ostream& os, vector& vec) { os << "{"; for (int i = 0; iostream& operator << (ostream& os, set& st){cout << "{"; for(auto itr = st.begin(); itr != st.end(); itr++) cout << *itr << (next(itr)!=st.end() ? ", " : ""); cout << "}"; return os;} templateostream& operator << (ostream& os, map mp){cout << "{"; for(auto itr = mp.begin(); itr != mp.end(); itr++) cout << "(" << (itr->first) << ", " << (itr->second) << ")" << (next(itr)!=mp.end() ? "," : ""); cout << "}"; return os; } void dump_func(){DUMPOUT << endl;} template void dump_func(Head&& head, Tail&&... tail){ DUMPOUT << head; if (sizeof...(Tail) == 0) { DUMPOUT << " "; } else { DUMPOUT << ", "; } dump_func(std::move(tail)...);} template inline bool chmax(T& a,T const& b){if(a>=b) return false; a=b; return true;} template inline bool chmin(T& a,T const& b){if(a<=b) return false; a=b; return true;} using ll = long long; using P = pair; using Pl = pair; using vi = vector; using vvi = vector; using vl = vector; using vvl = vector; using vp = vector; using vvp = vector; const int INF = 1<<29; const long long LINF=1LL<<59; template class FenwickTree { const int n; std::vector data; public: /// @brief /// 長さ count の Fenwick Tree を作り,全ての要素を 0 で初期化する. /// @complexity $O(n)$ FenwickTree(int count) : n(count), data(count, 0) { ; } /// @brief /// pos 番目の要素に値 value を加える. /// @complexity $O(\\log(n))$ void add(int pos, const T &value) { assert(0 <= pos && pos < n); for (int i = pos; i < n; i |= i + 1) data[i] += value; } /// @brief /// 区間 [0, pos) 番目の範囲の和を求める.(pos = 0 のときは 0 を返す.) /// @complexity $O(\\log(n))$ T sum(int pos) const { assert(0 <= pos && pos <= n); T res = 0; for (int i = pos - 1; i >= 0; i = (i & (i + 1)) - 1) { res += data[i]; } return res; } /// @brief /// 区間 [l, r) 番目の範囲の和を求める.(l = r のときは 0 を返す.) /// @complexity $O(\\log(n))$ T sum(int l, int r) const { assert(0 <= l && l <= r && r <= n); return sum(r) + (-sum(l)); } using value_type = T; using update_type = T; }; int main(){ ll N; cin >> N ; vvi g(N); rep(i,N-1){ int a; cin >> a ; g[a].pb(i+1); } ll ans = 0; FenwickTree fw(N); function dfs = [&](int u){ fw.add(u,1LL); ans += fw.sum(u); for(auto v:g[u]){ dfs(v); } fw.add(u,-1LL); }; dfs(0); cout << ans << endl; return 0; }