#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } /* * Dijkstra's algorithm. * Verified by: AtCoder ABC035 (http://abc035.contest.atcoder.jp/submissions/676539) */ struct Dijkstra { edges: Vec>, // adjacent list representation } /* * Code from https://doc.rust-lang.org/std/collections/binary_heap/ */ #[derive(Copy, Clone, Eq, PartialEq)] struct State { cost: i64, position: usize, } // The priority queue depends on `Ord`. // Explicitly implement the trait so the queue becomes a min-heap // instead of a max-heap. impl Ord for State { fn cmp(&self, other: &State) -> Ordering { // Notice that the we flip the ordering here match other.cost.cmp(&self.cost) { std::cmp::Ordering::Equal => other.position.cmp(&self.position), x => x, } } } // `PartialOrd` needs to be implemented as well. impl PartialOrd for State { fn partial_cmp(&self, other: &State) -> Option { Some(self.cmp(other)) } } impl Dijkstra { fn new(n: usize) -> Self { Dijkstra { edges: vec![Vec::new(); n] } } fn add_edge(&mut self, from: usize, to: usize, cost: i64) { self.edges[from].push((to, cost)); } /* * This function returns a Vec consisting of the distances from vertex source. */ fn solve(&self, source: usize, inf: i64) -> Vec { let n = self.edges.len(); let mut d = vec![inf; n]; let mut que = std::collections::BinaryHeap::new(); que.push(State {cost: 0, position: source}); while let Some(State {cost, position: pos}) = que.pop() { if d[pos] <= cost { continue; } d[pos] = cost; for adj in &self.edges[pos] { que.push(State {cost: cost + adj.1, position: adj.0}); } } return d; } } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (write!(out,$($format)*).unwrap()); } input! { n: usize, m: usize, p: usize1, q: usize1, t: i64, abc: [(usize1, usize1, i64); m], } let mut dijk = Dijkstra::new(n); for &(a, b, c) in &abc { dijk.add_edge(a, b, c); dijk.add_edge(b, a, c); } let mut mi = t + 1; const INF: i64 = 1 << 50; let z_dist = dijk.solve(0, INF); let p_dist = dijk.solve(p, INF); let q_dist = dijk.solve(q, INF); if z_dist[p] + p_dist[q] + z_dist[q] <= t { puts!("{}\n", t); return; } for i in 0..n { for j in 0..n { let sep = max(p_dist[i] + p_dist[j], q_dist[i] + q_dist[j]); if z_dist[i] + sep + z_dist[j] <= t { mi = min(mi, sep); } } } puts!("{}\n", t - mi); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }