#include "bits/stdc++.h" using namespace std; using ll = long long; const double pi = acos(-1); #define FOR(i,a,b) for (ll i=(a),__last_##i=(b);i<__last_##i;i++) #define RFOR(i,a,b) for (ll i=(b)-1,__last_##i=(a);i>=__last_##i;i--) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) RFOR(i,0,n) #define __GET_MACRO3(_1, _2, _3, NAME, ...) NAME #define rep(...) __GET_MACRO3(__VA_ARGS__, FOR, REP)(__VA_ARGS__) #define rrep(...) __GET_MACRO3(__VA_ARGS__, RFOR, RREP)(__VA_ARGS__) template ostream& operator<<(ostream& os, const vector& v) { REP(i, v.size()) { if (i)os << " "; os << v[i]; }return os; } template ostream& operator<<(ostream& os, const vector>& v) { REP(i, v.size()) { if (i)os << endl; os << v[i]; }return os; } const ll INF = 1LL << 60; ll MOD = 1000000007; ll _MOD = 1000000009; double EPS = 1e-10; #define int long long inline void my_io() { std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(16); //cout << setprecision(10) << scientific << ans << endl; } //エラトステネスの篩 const ll MAX_N = 500000; vector prime; //i番目の素数 bool is_prime[MAX_N + 1]; //is_prime[i]がtrueならばiは素数 //n以下の素数の数を返す ll sieve(ll n) { ll p = 0; REP(i, n + 1) { is_prime[i] = true; } is_prime[0] = is_prime[1] = false; FOR(i, 2, n + 1) { if (is_prime[i]) { p++; prime.push_back(i); for (int j = 2 * i; j <= n; j += i) { is_prime[j] = false; } } } return p; } signed main() { ll n; cin >> n; if (n < 2) { cout << 0 << endl; return 0; } sieve(n); ll ma = prime[prime.size() - 1] + 2; ll ans = 1; ll num; FOR(i, 1, prime.size()) { num = prime[i] * prime[i]; if (num > ma) { break; } if (is_prime[num - 2]) { ans += 2; } } cout << ans << endl; }