#ifdef DEBUG_IS_VALID #define DEB 1 #define _LIBCPP_DEBUG 0 #else #define DEB 0 #define NDEBUG #endif #include using namespace std; #define ALL(g) (g).begin(),(g).end() #define REP(i, x, n) for(int i = x; i < n; i++) #define rep(i,n) REP(i,0,n) #define RREP(i, x, n) for(int i = x; i >= n; i--) #define rrep(i, n) RREP(i,n,0) #define pb push_back #define fi first #define se second #pragma GCC optimize ("-O3") using namespace std; #define DUMPOUT cout #define dump(...) if(DEB) DUMPOUT<<" "<<#__VA_ARGS__<<" :["<<__LINE__<<":"<<__FUNCTION__<<"]"<ostream& operator << (ostream& os, pair p){cout << "(" << p.first << ", " << p.second << ")"; return os;} templateostream& operator << (ostream& os, vector& vec) { os << "{"; for (int i = 0; iostream& operator << (ostream& os, set& st){cout << "{"; for(auto itr = st.begin(); itr != st.end(); itr++) cout << *itr << (next(itr)!=st.end() ? ", " : ""); cout << "}"; return os;} templateostream& operator << (ostream& os, map mp){cout << "{"; for(auto itr = mp.begin(); itr != mp.end(); itr++) cout << "(" << (itr->first) << ", " << (itr->second) << ")" << (next(itr)!=mp.end() ? "," : ""); cout << "}"; return os; } void dump_func(){DUMPOUT << endl;} template void dump_func(Head&& head, Tail&&... tail){ DUMPOUT << head; if (sizeof...(Tail) == 0) { DUMPOUT << " "; } else { DUMPOUT << ", "; } dump_func(std::move(tail)...);} template inline bool chmax(T& a,T const& b){if(a>=b) return false; a=b; return true;} template inline bool chmin(T& a,T const& b){if(a<=b) return false; a=b; return true;} void solve(); int main(void) { std::cout << std::fixed << std::setprecision(15); solve(); return 0; } using ll = long long; using P = pair; using Pl = pair; using vi = vector; using vvi = vector; using vl = vector; using vvl = vector; using vp = vector; using vvp = vector; struct HLDecomposition { int n, pos; vector > graph; vector vid, head, sub, par, dep, inv, type; // vid[u] := the ordeing of u on decomposition // sub[u] := #(vertices of u-root subtree) // head[u] := the head of the line on decomposition // type[u] := the order of connected components HLDecomposition(){} HLDecomposition(const vector>& g, vector rs = {0}) :n(g.size()), pos(0), graph(g), vid(g.size(),-1), head(g.size()), sub(g.size(),1), par(g.size(), -1), dep(g.size(), 0), inv(g.size()), type(g.size()) { int c = 0; for(int r:rs){ dfs_sz(r); head[r] = r; dfs_hld(r, c++); } } void dfs_sz(int v) { for(int &u : graph[v]){ if(u == par[v]) continue; par[u] = v; dep[u] = dep[v] + 1; dfs_sz(u); sub[v] += sub[u]; if(sub[u] > sub[graph[v][0]]) swap(u,graph[v][0]); // sub[graph[v][0]] is largest } } void dfs_hld(int v,int c) { vid[v] = pos++; inv[vid[v]] = v; type[v] = c; for(int u : graph[v]){ if(u==par[v]) continue; head[u] = ( u == graph[v][0] ? head[v] : u); dfs_hld(u,c); } } // for_each(vertex) // [l,r] <- attention!! template void for_each(int u, int v, const F& f) { while(1){ if(vid[u] > vid[v]) swap(u,v); // vid[u] <= vid[v] f(max(vid[head[v]],vid[u]), vid[v]); if(head[u] != head[v]) v = par[head[v]]; else break; } } template T for_each(int u,int v,T ti,const Q &q,const F &f){ T l = ti, r = ti; while(1){ if(vid[u] > vid[v]){ swap(u,v); swap(l,r); } l = f(l, q(max(vid[head[v]], vid[u]), vid[v])); if(head[u] != head[v]) v = par[head[v]]; else break; } return f(l,r); } // for_each(edge) // [l,r] <- attention!! template void for_each_edge(int u, int v,const F& f) { while(1){ if(vid[u] > vid[v]) swap(u,v); if(head[u] != head[v]){ f(vid[head[v]], vid[v]); v = par[head[v]]; }else{ if(u!=v) f(vid[u]+1, vid[v]); break; } } } int edge_id(int u, int v){ // vid of the farther one of {u, v} int ch = dep[u] > dep[v] ? u : v; return vid[ch]; } int lca(int u,int v){ while(1){ if(vid[u] > vid[v]) swap(u,v); if(head[u]==head[v]) return u; v = par[head[v]]; } } int distance(int u,int v){ return dep[u] + dep[v] - 2 * dep[lca(u,v)]; } }; template class FenwickTree { const int n; std::vector data; public: /// @brief /// 長さ count の Fenwick Tree を作り,全ての要素を 0 で初期化する. /// @complexity $O(n)$ FenwickTree(int count) : n(count), data(count, 0) { ; } /// @brief /// pos 番目の要素に値 value を加える. /// @complexity $O(\\log(n))$ void add(int pos, const T &value) { assert(0 <= pos && pos < n); for (int i = pos; i < n; i |= i + 1) data[i] += value; } /// @brief /// 区間 [0, pos) 番目の範囲の和を求める.(pos = 0 のときは 0 を返す.) /// @complexity $O(\\log(n))$ T sum(int pos) const { assert(0 <= pos && pos <= n); T res = 0; for (int i = pos - 1; i >= 0; i = (i & (i + 1)) - 1) { res += data[i]; } return res; } /// @brief /// 区間 [l, r) 番目の範囲の和を求める.(l = r のときは 0 を返す.) /// @complexity $O(\\log(n))$ T sum(int l, int r) const { assert(0 <= l && l <= r && r <= n); return sum(r) + (-sum(l)); } using value_type = T; using update_type = T; }; const int INF = 1<<29; const long long LINF=1LL<<59; void solve(){ ll N; cin >> N ; vvi g(N); rep(i,N-1){ int u,v; cin >> u >> v ; u--; v--; g[u].pb(v); g[v].pb(u); } HLDecomposition hld(g); FenwickTree fw(N+1); auto add_query = [&](int l,int r){ fw.add(l,1LL); fw.add(r+1,-1LL); }; ll Q; cin >> Q ; rep(q,Q){ int a,b; cin >> a >> b ; a--; b--; hld.for_each(a,b,add_query); } ll ans = 0; rep(i,N){ ll s = fw.sum(i+1); ans += s * (s+1)/2LL; } cout << ans << endl; }