#include using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(LL i = (l) ; i < (r); ++i) #define incII(i, l, r) for(LL i = (l) ; i <= (r); ++i) #define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i) #define decII(i, l, r) for(LL i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() template bool setmin (T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template bool setmax (T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; } LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } template T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } #define bit(b, i) (((b) >> (i)) & 1) #define BC __builtin_popcountll #define SC static_cast #define SI(v) SC(v.size()) #define SL(v) SC(v.size()) #define RF(e, v) for(auto & e: v) #define ef else if #define UR assert(false) // ---- ---- #define LB(v, x) distance(v.begin(), lower_bound(ALL(v), x)) #define UB(v, x) distance(v.begin(), upper_bound(ALL(v), x)) vector> prime_factorization(LL x) { assert(x > 0); vector> f; for(LL i = 2; i <= x; i++) { if(i > 2000) { return { { x, 1 } }; } ////////// if(i * i > x) { i = x; } if(x % i == 0) { f.EB(i, 0); while(x % i == 0) { f.back().SE++; x /= i; } } } return f; } int n, q; vector> v(2001); int main() { cin >> n; vector z(n + 1); inc(i, n) { int a; cin >> a; if(a != 0) { auto f = prime_factorization(a); RF(e, f) { inc(j, e.SE) { v[e.FI].PB(i); } } } else { z[i + 1] = 1; } } inc(i, n) { z[i + 1] += z[i]; } cin >> q; inc(i, q) { int p, l, r; cin >> p >> l >> r; auto f = prime_factorization(p); l--; r--; bool ans = true; if(z[r + 1] - z[l] == 0) { RF(e, f) { ans &= (e.FI <= 2000 && UB(v[e.FI], r) - LB(v[e.FI], l) >= e.SE); } } cout << (ans ? "Yes" : "NO") << "\n"; } return 0; }