#include using namespace std; using lint = long long; const lint mod = 1e9 + 7; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountl((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzl(x)) template inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } template inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } templateint character_count(T text, U character){ int ans = 0; for(U i: text){ ans += (i == character); } return ans; } lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; // double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template string to_string(pair x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; } template void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; } template void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint C(int p, int q) const{ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } template< typename Monoid > struct SegmentTree { using F = function< Monoid(Monoid, Monoid) >; int sz; vector< Monoid > seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, M1); } void set(int k, const Monoid &x) { seg[k + sz] = x; } void build() { for(int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while(k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) L = f(L, seg[a++]); if(b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } }; int main(){ lint H, W; int N; cin >> H >> W >> N; lint X[N], Y[N], L[N]; vector Xs, Ys; for(int i = 0; i < N; i++){ cin >> X[i] >> Y[i] >> L[i]; if(1 <= X[i] && X[i] <= W){ Xs.push_back(X[i]); } if(1 <= Y[i] && Y[i] <= H){ Ys.push_back(Y[i]); } } sort(all(Xs)); Xs.erase(unique(all(Xs)), Xs.end()); sort(all(Ys)); Ys.erase(unique(all(Ys)), Ys.end()); int h = int(Ys.size()), w = int(Xs.size()); SegmentTree up(w, [](int a, int b){ return max(a, b); }, 0); SegmentTree down(w, [](int a, int b){ return max(a, b); }, 0); SegmentTree left(h, [](int a, int b){ return max(a, b); }, 0); SegmentTree right(h, [](int a, int b){ return max(a, b); }, 0); for(int i = 0; i < N; i++){ if(X[i] == 0){ int pos = int(lower_bound(all(Ys), Y[i]) - Ys.begin()); lint len = left[pos] + L[i]; int up_collision, down_collision; lint up_pos, down_pos, right_pos; { int low = -1, high = w; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(up.query(0, mid + 1) >= Y[i]){ high = mid; }else{ low = mid; } } up_collision = high; if(high == w){ up_pos = 1e18; }else{ up_pos = Xs[high]; } } { int low = -1, high = w; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(down.query(0, mid + 1) >= H - Y[i]){ high = mid; }else{ low = mid; } } down_collision = high; if(high == w){ down_pos = 1e18; }else{ down_pos = Xs[high]; } } { right_pos = W - right[pos] + 1; } if(len < min({up_pos, down_pos, right_pos})){ left.update(pos, len); }else if(up_pos < down_pos && up_pos < right_pos){ left.update(pos, 0); up.update(up_collision, 0); }else if(down_pos < up_pos && down_pos < right_pos){ left.update(pos, 0); down.update(down_collision, 0); }else{ left.update(pos, 0); right.update(pos, 0); } } if(X[i] == W + 1){ int pos = int(lower_bound(all(Ys), Y[i]) - Ys.begin()); lint len = right[pos] + L[i]; int up_collision, down_collision; lint up_pos, down_pos, left_pos; { int low = -1, high = w; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(up.query(w - mid - 1, w) >= Y[i]){ high = mid; }else{ low = mid; } } up_collision = high; if(high == w){ up_pos = 1e18; }else{ up_pos = Xs[w - high - 1]; } } { int low = -1, high = w; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(down.query(w - mid - 1, w) >= H - Y[i]){ high = mid; }else{ low = mid; } } down_collision = high; if(high == w){ down_pos = 1e18; }else{ down_pos = Xs[w - high - 1]; } } { left_pos = W - left[pos] + 1; } if(len < min({up_pos, down_pos, left_pos})){ right.update(pos, len); }else if(up_pos < down_pos && up_pos < left_pos){ right.update(pos, 0); up.update(up_collision, 0); }else if(down_pos < up_pos && down_pos < left_pos){ right.update(pos, 0); down.update(down_collision, 0); }else{ right.update(pos, 0); left.update(pos, 0); } } if(Y[i] == 0){ int pos = int(lower_bound(all(Xs), X[i]) - Xs.begin()); lint len = up[pos] + L[i]; int left_collision, right_collision; lint left_pos, right_pos, down_pos; { int low = -1, high = h; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(left.query(0, mid + 1) >= X[i]){ high = mid; }else{ low = mid; } } left_collision = high; if(high == h){ left_pos = 1e18; }else{ left_pos = Ys[high]; } } { int low = -1, high = h; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(right.query(0, mid + 1) >= W - X[i]){ high = mid; }else{ low = mid; } } right_collision = high; if(high == h){ right_pos = 1e18; }else{ right_pos = Ys[high]; } } { down_pos = H - down[pos] + 1; } if(len < min({left_pos, right_pos, down_pos})){ up.update(pos, len); }else if(left_pos < right_pos && left_pos < down_pos){ up.update(pos, 0); left.update(left_collision, 0); }else if(right_pos < left_pos && right_pos < down_pos){ up.update(pos, 0); right.update(right_collision, 0); }else{ up.update(pos, 0); down.update(pos, 0); } } if(Y[i] == H + 1){ int pos = int(lower_bound(all(Xs), X[i]) - Xs.begin()); lint len = down[pos] + L[i]; int left_collision, right_collision; lint left_pos, right_pos, up_pos; { int low = -1, high = h; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(left.query(h - mid - 1, h) >= X[i]){ high = mid; }else{ low = mid; } } left_collision = high; if(high == h){ left_pos = 1e18; }else{ left_pos = Ys[h - high - 1]; } } { int low = -1, high = h; // (low, high] while(low + 1 < high){ int mid = (low + high) / 2; if(right.query(h - mid - 1, h) >= W - X[i]){ high = mid; }else{ low = mid; } } right_collision = high; if(high == w){ right_pos = 1e18; }else{ right_pos = Ys[h - high - 1]; } } { up_pos = H - up[pos] + 1; } if(len < min({left_pos, right_pos, up_pos})){ down.update(pos, len); }else if(left_pos < right_pos && left_pos < up_pos){ down.update(pos, 0); left.update(left_collision, 0); }else if(right_pos < left_pos && right_pos < up_pos){ down.update(pos, 0); right.update(right_collision, 0); }else{ down.update(pos, 0); up.update(pos, 0); } } } lint ans = 0; for(int i = 0; i < w; i++){ ans += up[i] + down[i]; } for(int i = 0; i < h; i++){ ans += left[i] + right[i]; } cout << ans << endl; }