#include #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" #define NDEBUG #define SHOW(...) static_cast(0) //!===========================================================!// //! dP dP dP !// //! 88 88 88 !// //! 88aaaaa88a .d8888b. .d8888b. .d888b88 .d8888b. 88d888b. !// //! 88 88 88ooood8 88' '88 88' '88 88ooood8 88' '88 !// //! 88 88 88. ... 88. .88 88. .88 88. ... 88 !// //! dP dP '88888P' '88888P8 '88888P8 '88888P' dP !// //!===========================================================!// template T read() { T v; return std::cin >> v, v; } template std::vector readVec(const std::size_t l) { std::vector v(l); for (auto& e : v) { std::cin >> e; } return v; } using ld = long double; using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr unsigned int MOD = 1000000007; template constexpr T INF = std::numeric_limits::max() / 4; template constexpr F PI = static_cast(3.1415926535897932385); std::mt19937 mt{std::random_device{}()}; template bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } template std::vector Vec(const std::size_t n, T v) { return std::vector(n, v); } template auto Vec(const std::size_t n, Args... args) { return std::vector(n, Vec(args...)); } template constexpr T popCount(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : (T)__builtin_popcountll(u); #else unsigned long long v = static_cast(u); return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast(v * 0x0101010101010101ULL >> 56 & 0x7f); #endif } template constexpr T log2p1(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : T(64 - __builtin_clzll(u)); #else unsigned long long v = static_cast(u); return v = static_cast(v), v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), popCount(v); #endif } template constexpr T clog(const T v) { return v == 0 ? T(0) : log2p1(v - 1); } template constexpr T msbp1(const T v) { return log2p1(v); } template constexpr T lsbp1(const T v) { #ifdef __has_builtin return __builtin_ffsll(v); #else return v == 0 ? T(0) : popCount((v & (-v)) - T(1)) + T(1); #endif } template constexpr bool ispow2(const T v) { return popCount(v) == 1; } template constexpr T ceil2(const T v) { return v == 0 ? T(1) : T(1) << log2p1(v - 1); } template constexpr T floor2(const T v) { return v == 0 ? T(0) : T(1) << (log2p1(v) - 1); } //!=================================================!// //! .88888. dP !// //! d8' '88 88 !// //! 88 88d888b. .d8888b. 88d888b. 88d888b. !// //! 88 YP88 88' '88 88' '88 88' '88 88' '88 !// //! Y8. .88 88 88. .88 88. .88 88 88 !// //! '88888' dP '88888P8 88Y888P' dP dP !// //! 88 !// //! dP !// //!=================================================!// template struct BaseGraph { BaseGraph(const std::size_t v) : V{v}, edge(v), rev_edge(v) {} void addEdge(const std::size_t from, const std::size_t to, const Cost cost, const bool bi = false) { assert(from < V), assert(to < V); edge[from].push_back(Edge{to, cost}), rev_edge[to].push_back(Edge(from, cost)); if (bi) { addEdge(to, from, cost, false); } } struct Edge { Edge(const std::size_t to, const Cost cost) : to{to}, cost{cost} {} const std::size_t to; const Cost cost; bool operator<(const Edge& e) const { return cost != e.cost ? cost < e.cost : to < e.to; } }; const std::vector& operator[](const std::size_t i) const { return assert(i < V), edge[i]; } friend std::ostream& operator<<(std::ostream& os, const BaseGraph& g) { os << "[\n"; for (std::size_t i = 0; i < g.V; i++) { for (const auto& e : g.edge[i]) { os << i << "->" << e.to << ":" << e.cost << "\n"; } } return (os << "]\n"); } static std::size_t to(const Edge& e) { return e.to; } const std::size_t V; std::vector> edge, rev_edge; }; template <> struct BaseGraph { BaseGraph(const std::size_t v) : V{v}, edge(v), rev_edge(v) {} void addEdge(const std::size_t from, const std::size_t to, const bool bi = false) { assert(from < V), assert(to < V); edge[from].push_back(to), rev_edge[to].push_back(from); if (bi) { addEdge(to, from, false); } } const std::vector& operator[](const std::size_t i) const { return assert(i < V), edge[i]; } friend std::ostream& operator<<(std::ostream& os, const BaseGraph& g) { os << "[\n"; for (std::size_t i = 0; i < g.V; i++) { for (const std::size_t to : g.edge[i]) { os << i << "->" << to << "\n"; } } return (os << "]\n"); } static std::size_t to(const std::size_t e) { return e; } const std::size_t V; std::vector> edge, rev_edge; }; using Graph = BaseGraph; using Tree = Graph; template using CostGraph = BaseGraph; template using CostTree = CostGraph; //!==============================================================!// //! 888888ba oo oo dP dP !// //! 88 '8b 88 88 !// //! 88 88 dP dP 88 .dP .d8888b. d8888P 88d888b. .d8888b. !// //! 88 88 88 88 88888" Y8ooooo. 88 88' '88 88' '88 !// //! 88 .8P 88 88 88 '8b. 88 88 88 88. .88 !// //! 8888888P dP 88 dP 'YP '88888P' dP dP '88888P8 !// //! 88 !// //! dP !// //!==============================================================!// template std::vector Dijkstra(const CostGraph& g, const std::size_t s) { std::vector d(g.V, std::numeric_limits::max()); using P = std::pair; std::priority_queue, std::greater

> q; d[s] = 0, q.push({0, s}); while (not q.empty()) { const Cost cost = q.top().first; const std::size_t v = q.top().second; q.pop(); if (d[v] < cost) { continue; } for (const auto& e : g.edge[v]) { if (d[e.to] <= d[v] + e.cost) { continue; } d[e.to] = d[v] + e.cost, q.push({d[e.to], e.to}); } } return d; } //!=====================================!// //! 8888ba.88ba oo !// //! 88 '8b '8b !// //! 88 88 88 .d8888b. dP 88d888b. !// //! 88 88 88 88' '88 88 88' '88 !// //! 88 88 88 88. .88 88 88 88 !// //! dP dP dP '88888P8 dP dP dP !// //!=====================================!// int main() { const ll X = read(), Y = read(), Z = read(); CostGraph G(4); G.addEdge(0, 1, 2LL * std::min({X, Y, Z}), true); char S[2]; int T[2]; for (int i = 0; i < 2; i++) { std::cin >> S[i] >> T[i]; G.addEdge(0, 2 + i, 2LL * T[i] - 1, true); if (S[i] == 'A') { G.addEdge(1, 2 + i, 2LL * X - (2LL * T[i] - 1), true); } else if (S[i] == 'B') { G.addEdge(1, 2 + i, 2LL * Y - (2LL * T[i] - 1), true); } else { G.addEdge(1, 2 + i, 2LL * Z - (2LL * T[i] - 1), true); } } if (S[0] == S[1]) { G.addEdge(2, 3, std::abs(T[0] - T[1]) * 2LL, true); } std::cout << Dijkstra(G, 2)[3] / 2 << std::endl; return 0; }