#include using namespace std; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for(int i=(begin);i<(end);i++) #define REP(i, n) FOR(i,0,n) #define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--) #define IREP(i, n) IFOR(i,0,n) #define Sort(v) sort(v.begin(), v.end()) #define Reverse(v) reverse(v.begin(), v.end()) #define all(v) v.begin(),v.end() #define SZ(v) ((int)v.size()) #define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x)) #define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x)) #define Max(a, b) a = max(a, b) #define Min(a, b) a = min(a, b) #define bit(n) (1LL<<(n)) #define bit_exist(x, n) ((x >> n) & 1) #define debug(x) cout << #x << "=" << x << endl; #define vdebug(v) cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; #define mdebug(m) cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} #define pb push_back #define f first #define s second #define int long long #define INF 1000000000000000000 template istream &operator>>(istream &is, vector &v){ for (auto &x : v) is >> x; return is; } template ostream &operator<<(ostream &os, vector &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; } template void Out(T x) { cout << x << endl; } template void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); } using vec = vector; using mat = vector; using Pii = pair; using PiP = pair; using PPi = pair; using bools = vector; using pairs = vector; //int dx[4] = {1,0,-1,0}; //int dy[4] = {0,1,0,-1}; //char d[4] = {'D','R','U','L'}; const int mod = 1000000007; //const int mod = 998244353; #define Add(x, y) x = (x + (y)) % mod #define Mult(x, y) x = (x * (y)) % mod template struct ModInt{ using ll = long long; ll val; void setval(ll v) { val = v % MOD; }; ModInt(): val(0) {} ModInt(ll v) { setval(v); }; ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); } ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); } ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); } ModInt operator/(const ModInt &x) const { return *this * x.inv(); } ModInt operator-() const { return ModInt(MOD - val); } ModInt operator+=(const ModInt &x) { return *this = *this + x; } ModInt operator-=(const ModInt &x) { return *this = *this - x; } ModInt operator*=(const ModInt &x) { return *this = *this * x; } ModInt operator/=(const ModInt &x) { return *this = *this / x; } friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; } friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; } ModInt pow(ll n) const { ModInt a = 1; if(n == 0) return a; int i0 = 64 - __builtin_clzll(n); for(int i = i0 - 1; i >= 0; i--){ a = a * a; if((n >> i) & 1) a *= (*this); } return a; } ModInt inv() const { return this->pow(MOD - 2); } }; using mint = ModInt; mint pow(mint x, long long n) { return x.pow(n); } //using mint = double; //for debug using mvec = vector; using mmat = vector; struct Combination{ vector fact, invfact; Combination(int N){ fact = vector({mint(1)}); invfact = vector({mint(1)}); fact_initialize(N); } void fact_initialize(int N){ int i0 = fact.size(); if(i0 >= N + 1) return; fact.resize(N + 1); invfact.resize(N + 1); for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i; invfact[N] = (mint)1 / fact[N]; for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1); } mint nCr(int n, int r){ if(n < 0 || r < 0 || r > n) return mint(0); if(fact.size() < n + 1) fact_initialize(n); return fact[n] * invfact[r] * invfact[n - r]; } mint nPr(int n, int r){ if(n < 0 || r < 0 || r > n) return mint(0); if(fact.size() < n + 1) fact_initialize(n); return fact[n] * invfact[n - r]; } }; //N=2^n class FFT { using comp = complex; private: vector f, f_tmp; void forward_exec(int l, int r, int t){ if(t == n) return; int sz = (r - l) >> 1; REP(i, sz){ f_tmp[l + i] = f[l + 2 * i]; f_tmp[l + sz + i] = f[l + 2 * i + 1]; } FOR(i, l, r) f[i] = f_tmp[i]; forward_exec(l, l + sz, t + 1); forward_exec(l + sz, r, t + 1); REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[i << t]; REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[(sz + i) << t]; FOR(i, l, r) f[i] = f_tmp[i]; } void inverse_exec(int l, int r, int t){ if(t == n) return; int sz = (r - l) / 2; REP(i, sz){ f_tmp[l + i] = f[l + 2 * i]; f_tmp[l + sz + i] = f[l + 2 * i + 1]; } FOR(i, l, r) f[i] = f_tmp[i]; inverse_exec(l, l + sz, t + 1); inverse_exec(l + sz, r, t + 1); REP(i, sz) f_tmp[l + i] = f[l + i] + f[l + sz + i] * pow_e[N - (i << t)]; REP(i, sz) f_tmp[l + sz + i] = f[l + i] + f[l + sz + i] * pow_e[N - ((sz + i) << t)]; FOR(i, l, r) f[i] = f_tmp[i]; } public: int N, n; vector pow_e; FFT(int N): N(N){ n = 31 - __builtin_clz((signed)N); assert(N == (1 << n)); pow_e.resize(N + 1); pow_e[0] = pow_e[N] = comp(1.0, 0.0); double phi = 2.0 * M_PI / N; FOR(i, 1, N) pow_e[i] = exp(comp(0, phi * i)); f.resize(N); f_tmp.resize(N); } void exec(vector &F, bool inverse = false){ assert(F.size() == N); f.swap(F); if(!inverse) forward_exec(0, N, 0); else inverse_exec(0, N, 0); F.swap(f); if(inverse){ REP(i, N) F[i] /= N; } } vector convolution(vector A, vector B){ exec(A); exec(B); vector C(N); REP(i, N) C[i] = A[i] * B[i]; exec(C, true); return C; } vector int_convolution(vector A, vector B){ vector a(N), b(N); REP(i, N){ a[i] = comp(A[i], 0); b[i] = comp(B[i], 0); } vector c = convolution(a, b); vector C(N); REP(i, N) C[i] = (int)(c[i].real() + 0.5); return C; } }; signed main(){ int N; cin >> N; vec A(N); cin >> A; long double vmin = INF; int m = A[0]; mint mmin; FOR(i, 1, N){ long double v = logl((long double)(m + A[i])) + (long double)A[i] * logl((long double)m); if(v < vmin){ vmin = v; mmin = (mint)(m + A[i]) * pow((mint)m, A[i]); } Min(m, A[i]); } //debug(mmin); vec cnt(bit(20), 0); FFT fft(bit(20)); REP(i, N) cnt[A[i]]++; cnt = fft.int_convolution(cnt, cnt); REP(i, N) cnt[2 * A[i]] -= 1.0; mint a1 = 1; REP(i, SZ(cnt)){ a1 *= pow((mint)i, cnt[i] / 2); } //debug(a1); mint a2 = 1; int s = 0; IREP(i, N){ a2 *= pow((mint)A[i], s); s += A[i]; } mint ans = a1 * a2 / mmin; Out(ans); return 0; }